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Abstract
Despite substantial advances in the study, treatment, and prevention of cardiovascular disease, numerous challenges relating to
optimally screening, diagnosing, and managing patients remain. Simultaneous improvements in computing power, data storage, and
data analytics have led to the development of new techniques to address these challenges. One powerful tool to this end is
machine learning (ML), which aims to algorithmically identify and represent structure within data. Machine learning’s ability to
efficiently analyze large and highly complex data sets make it a desirable investigative approach in modern biomedical research.
Despite this potential and enormous public and private sector investment, few prospective studies have demonstrated improved
clinical outcomes from this technology. This is particularly true in cardiology, despite its emphasis on objective, data-driven
results. This threatens to stifle ML’s growth and use in mainstream medicine. We outline the current state of ML in cardiology and
outline methods through which impactful and sustainable ML research can occur. Following these steps can ensure ML reaches its
potential as a transformative technology in medicine.
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Machine Learning in Cardiology—Where Are
We Today?

In the past 3 decades, each of the 6 major pillars of cardiovas-

cular medicine—cardiac electrophysiology, heart failure and

transplantation, advanced cardiac imaging, structural and inter-

ventional cardiology, congenital cardiology, and preventive

cardiology—have experienced monumental clinical and basic

science advances that have significantly reduced morbidity and

mortality for millions of patients.1-6 Despite these advance-

ments, enormous challenges in each of these fields remain.

In electrophysiology, pioneering atrial fibrillation (AF)

ablation techniques such as pulmonary vein isolation,7-10 mitral

isthmus ablation,11 and the development of pulse field abla-

tion12 have reduced morbidity for patients with AF. Safer yet

more efficacious novel anticoagulants including factor Xa13-15

and direct thrombin inhibitors16 have reached the market, help-

ing to prevent arrhythmogenic stroke. However, some project

the prevalence of AF will double by 2030 and triple by

2050,15,17,18 AF-related stroke risk changes rapidly,19 and iden-

tifying patients who have subclinical AF remains a challenge.
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In heart failure, a better understanding of cardiac pathophy-

siology has led to a more comprehensive and straightforward

treatment regimen aimed at both reducing cardiac remodel-

ing20 and emphasizing neurohormonal blockade21-24 in patients

with reduced ejection fraction heart failure. Notable improve-

ments in left ventricular assist device technology such as the

advent of continuous,25 fully magnetically levitated

centrifugal-flow machines26 have revolutionized advanced

heart failure management by reducing rates of both disabling

stroke and reoperation for device malfunction. Nevertheless,

preserved ejection fraction heart failure (HFpEF) research has

not yet been as fruitful. Though recent breakthroughs have

begun to shed light on this highly heterogeneous disease,27

no pharmacologic agents have been shown in large clinical

trials to significantly decrease mortality.28-32 In imaging, car-

diac magnetic resonance imaging has led to improved recog-

nition of viable myocardium in the setting of previous coronary

ischemia33 but challenges remain with regard to making these

advanced imaging modalities readily accessible to patients in

rural areas. Additionally, echocardiography continues to suffer

from user variability, and suboptimal windows often negatively

impact ejection fraction and longitudinal strain estimation.

Structural and interventional cardiology has witnessed the

development of effective, yet less-invasive valvular repair

methods. These techniques, including transcatheter aortic valve

replacement (TAVR)3,34,35 and transcatheter mitral valve

repair,36 have significantly increased access to care for previ-

ously ineligible patients while simultaneously reducing mor-

bidity and mortality for thousands of individuals. Moreover,

the development of novel drug-eluting stents has reduced the

risk of stent restenosis and subsequent acute coronary syn-

drome (ACS) in high-risk patients.37,38 Despite these efforts,

however, cardiovascular disease (CVD) remains the leading

cause of death in the United States and worldwide; health-

care expenditure for CVD diagnosis and both acute and chronic

therapeutic management represent an enormous burden to

reducing health-care expenses39,40; and clinicians and research-

ers continue to experience challenges in optimally screening,

diagnosing, and treating patients in all cardiovascular

subspecialties.41-47

Although these enormous barriers exist, new paths are emer-

ging to tackle them. Improvements in computing power and

accessibility through methods such as cloud computing have

coincided with more streamlined electronic medical soft-

ware.48 Some of the byproducts of these developments include

enhanced connectivity among data types as well as better data-

base and file formats for data storage and analysis, encrypted

cloud storage, and the development of more robust techniques

to analyze large data sets.49-51 At the forefront of these tech-

nological advancements is machine learning (ML). The pri-

mary focus of ML is to algorithmically represent structure

present within data or to make predictions or classifications

of outcomes based upon relationships present within that

data.52 This is particularly useful in situations where traditional

statistical methods have difficulty incorporating large numbers

of variables or modeling complex relationships between

variables, especially when data sets are large and diverse, or

variables have nonindependent relationships. Machine learning

has garnered attention both in popular culture and from the

medical community, and both public and private entities

around the globe have taken notice. The consulting firm

Accenture projects monumental investments in biomedical

ML will occur over the next few years, with spending projected

to reach over 6.5 billion dollars per year by 2021, an 11-fold

increase in per-year spending from 2014 (https://www.accen

ture.com/fi-en/insight-artificial-intelligence-healthcare).

The enormous investment may be worth it. Accenture also

projects artificial intelligence [AI] to save the health-care

industry as much as 150 billion dollars by 2026. Furthermore,

when combined with recent breakthroughs in high-resolution

medical imaging such as spatial partitioning and super-

resolution imaging, robust genome sequence analyses, and

more accurate longitudinal measurement of physiologic

metrics including the use of wearable devices, ML has demon-

strated significant breakthroughs in various basic science and

clinical research settings. As Topol has discussed,53 the past

few years of ML-related research alone have yielded algo-

rithms shown to accurately characterize vertebral compression

fractures,54 tuberculosis lung lesions,55 and lung nodules56 on

imaging studies. Machine learning has also been used success-

fully to identify skin cancer,57 characterize high-risk polyps on

colonoscopy,58,59 accurately visualize breast cancer on mam-

mograms,60,61 and even predict with high fidelity the likelihood

of hypoglycemia in patients based principally on telemetry

tracings.62

Despite enormous investment and interest, however, ML

has yet to reach its potential,63 particularly in cardiology.

Although research publications related to ML have skyrocketed

over the past few years, prospective studies demonstrating clin-

ical impact, particularly in cardiovascular medicine, remain

few and far between.64 Clinical guidelines for cardiology,

which physicians use on a routine basis to treat patients, barely

mention ML and virtually no findings from ML projects have

been incorporated into these guidelines to-date.

In this article, we explore how ML can play an instrumental

role in assisting researchers and clinicians to better understand

the complex pathophysiologic mechanisms of cardiovascular

medicine and outline how we as clinicians and researchers can

optimally utilize ML to positively impact patient outcomes in a

clinically meaningful way. Finally, we provide commentary on

how ML can become more mainstream for clinicians and

patients as well as more sustainable for robust research moving

forward.

Machine Learning and Cardiology

Simply put, ML is the field of study concerned with algorithms

that learn from data. There exists an extensive amount of soft-

ware, tools, and packages that implement ML algorithms in

various programming languages, many of them open-source.65

The intricacies involved in designing ML algorithms and their

respective strengths and limitations are beyond the scope of
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this article but can be found in many other sources.66-70 For the

purpose of this article, we will focus on 2 subcategories of ML,

specifically supervised and unsupervised learning, which differ

in their primary goal. In supervised learning, an algorithm is

trained to predict some outcome that is specifically defined,

which helps “supervise” the model’s training and predictions.

Here, the algorithm learns how to identify complex relation-

ships and patterns within data, often based upon nonlinear

combinations of features, and is subsequently able to make

conclusions, such as predicting values or classes. These algo-

rithms are typically built, refined, and tested on separate

chunks of the data to prevent overfitting and better assess gen-

eralizability. A real-world example is when social media plat-

forms use images labeled as a certain individual to teach a

computer to identify that individual in subsequent photos. In

clinical medicine, this is similar to breaking an imaging down

into features (pixels) which are fed to a computer with associ-

ated labels (such as cancer diagnosis) to learn patterns that are

subsequently tested on new images for automated detection.71

In unsupervised learning, a computer again learns complex

relationships within the inherent structure of data, typically

without reference to any outcome (termed “label” in ML) such

as “case” or “control.” The ultimate hope is that the patterns or

structures identified can be useful for tasks such as clustering,

which can offer further insight into patient stratification within

a disease. Deep learning, a class of ML that involves multiple,

or “deeper,” layers of abstraction, includes powerful architec-

tures such as convolutional neural networks which have revo-

lutionized the field of computer vision,72 among others, and is

actively being applied in the health-care field.73 Deep learning

methods, such as autoencoders, involve a combination of unsu-

pervised learning with a supervised learning method “stacked”

on the final layers of the model. The unsupervised component

learns useful features in the data, and then the supervised model

uses the learned features to make predictions.

Independent of ML technique development and refinement,

health-care utilization has continued to rise.74 As patients visit

clinicians more often, they also undergo more thorough screen-

ing and more frequent diagnostic testing.75 Every patient

encounter, blood test, vital sign, and imaging study represents

more useable data. In particular, cardiology represents a

uniquely data-rich field,52 where randomized controlled trials

are commonplace and there is a wealth of data which may be

used to objectively drive patient care. Furthermore, since most

CVDs are highly chronic conditions, the longitudinal aspect of

disease creates a wealth of semistructured data even in routine

conditions. When these factors are combined with an aging

population and increasing rates of comorbidities such as hyper-

tension, diabetes, hyperlipidemia, cardiac arrhythmias, and

heart failure,39,40 it is clear that cardiology represents a well-

positioned field for impactful ML application. Cardiovascular

disease is also highly complex, and ML-based risk scoring can

better capture the multidimensionality of cardiovascular patho-

genesis to better predict prognosis as compared to risk-scoring

systems based on standard statistical modeling.52 Despite this,

cardiology has lagged behind other medical specialties in

ML-related clinically relevant research output, and very few

prospective studies utilizing ML have been published in or

reflected upon clinical guidelines.

Methods for Moving the Needle on Clinical
Outcomes

Despite ML’s enormous potential, researchers and clinical

practitioners have yet to demonstrate the clinical outcomes

improvement that health-care institutions and patients seek.63

The medical community must remain aware of the so-called

“AI chasm,” which refers to the substantial difference between

developing a highly accurate algorithm and being able to suc-

cessfully apply that algorithm in clinical workflows.76 After

all, a highly accurate algorithm is of little use without demon-

strated clinical outcome improvement. This issue is highly

complex and multifactorial in nature. However, there are a few

steps researchers can take to make CVD-related ML research

more clinically impactful.

The Importance of a Pertinent Clinical
Question and Multidisciplinary Team

The clinical question provides the basis for study design,

implementation, and outcomes, and its generation represents

an essential step in clinical research. Biomedical ML research

is no exception. Though ML capabilities have increased dra-

matically over the past few years, so too have ML research

articles which either do not broach a clinically relevant topic

or are too challenging to generalize and apply in the confines of

current clinical practice.77 In current biomedical ML, studies

appear to be driven more by data availability than by clinical

relevance. Beginning the process by first identifying important,

unsolved clinical questions and then examining the available

data, rather than vice versa, may help to increase the clinical

relevance and impact of ML results. Further, an outline for

addressing an ML algorithm’s potential results within current

clinical medicine practice structure is essential and should be

discussed prior to algorithm generation. Additionally, incor-

porating a multidisciplinary clinical research team across com-

putational, biological, and medical areas of expertise is

essential. Not only can such practice result in more computa-

tionally sound and clinically useful conclusions,78 it can

streamline outcomes implementation within existing institu-

tional workflows.

This is perhaps more essential in cardiology, where there is

often a plethora of data, numerous unanswered clinical ques-

tions, and the need for multiple subspecialty involvement when

generating sound treatment plans for medically complex

patients. For example, patients with severe aortic valvular ste-

nosis undergoing transcatheter aortic valve intervention

(TAVI) commonly suffer from atrioventricular (AV) nodal

blockade intra- or periprocedurally in part as a result of

mechanical impingement of the nearby AV node.79-81 Cardio-

vascular interventionalists and electrophysiologists often work

in lockstep to treat affected patients, with the common goal of
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promoting safe cardiac conduction while preserving the integ-

rity of the newly placed valve. Transcatheter aortic valve inter-

vention is a relatively new but now commonly utilized, safe,

and highly efficacious technique used to treat a very prevalent

disorder with high associated morbidity. It does, however, have

a specific, potentially serious adverse effect, representing a

fruitful area of potential clinical research. Since most patients

undergoing this procedure receive similar preprocedural labs,

imaging studies, and other associated workup, TAVI-related

complications represent a worthwhile area for ML-related clin-

ical research. To begin, retrospective data can be analyzed to

develop an ML algorithm with superior risk stratification com-

pared to traditional statistics, and that algorithm can be subse-

quently applied prospectively to determine whether clinical

impact benefits from algorithm implementation in the everyday

clinical setting. A multidisciplinary research team can addi-

tionally brainstorm the full implementation of the ML algo-

rithm into clinical practice. This can occur through the

institutional electronic health record (EHR) to facilitate stream-

lined risk stratification prior to every TAVI procedure and

prepare contingency plans if needed. Embedding such ML

work into hospital operations can enable a learning health sys-

tem where past decisions can inform current ones,82 particu-

larly for medically complex patients.

Data Set Generation and Interoperability

One major obstacle in the production of fruitful ML-based

cardiology clinical research are the data often employed to

train algorithms. Machine learning results are limited heavily

by several important aspects of the underlying data, such as

suboptimal quality as well as when it is cluttered, incomplete,

poorly organized, not representative of the global population,

or contains systematic bias, among others. In these scenarios,

ML algorithms can underperform compared to standard sta-

tistical methods.83 Missing or unknown potentially important

variables can have devastating effects to the training of ML

algorithms, and inaccurate data input and biased data selec-

tion can mislead an ML algorithm to make erroneous conclu-

sions.84 For instance, issues with algorithms used in

Amazon’s employee hiring were shown to be biased against

female applicants at least in part due to the development of the

algorithm based on 10 years of predominantly male hires.85

Within health care, there is potential for inadvertent bias

introduction within the EHR system,86 and a recent article

found evidence of racial bias within an algorithm used to

identify patients with complex care needs for additional assis-

tance programs.87 Data issues are especially prevalent in

high-volume cardiac care centers, where a wide range of

advanced testing is offered to patients. Cardiology patients

in tertiary and quaternary care centers generate a plethora of

data from both cardiology-specific imaging modalities (elec-

trocardiograms [EKG] and telemetry, transthoracic and trans-

esophageal echocardiograms, cardiac magnetic resonance

imaging [MRI], computed tomography coronaries) and tradi-

tional data gathered from cardiac workups in hospitalized

patients (vital signs and laboratory studies, among others).

Keeping well-organized and complete metrics on patients

with ACS, heart failure, recent heart transplantation, cardiac

conduction abnormalities, and those undergoing procedures

would improve the applicability and reduce bias in ML

algorithms.

Though storage capacity has increased dramatically over the

past few years, data interconnectivity and harmonization

remain an enormous challenge. Centers utilizing the same EHR

system are often unable to store data in a manner that is acces-

sible to clinicians and researchers in a swift and dissectible

manner, and patient privacy laws limit centralization of all data

across a wide number of care centers.88 The plethora of data

silos within clinical medicine—EHRs, picture archiving and

communication systems from multiple vendors—separate sys-

tems for data generated from EKGs, electroencephalograms,

echocardiographic imaging, and so on, and render data inter-

connectivity especially difficult. Open source models, which

encourage open collaboration and peer production, can help

facilitate reproducibility of studies and external validation, but

despite this, disparate formats and data sources remain barriers

to interoperability and successfully reproducing results.

One solution is the implementation of supplemental ML

frameworks into cloud-based platforms such as the Amazon

Web Services and the American Heart Association-powered

Precision Medicine Platform (https://precision.heart.org/). This

would provide optimization of imaging processing tools by

quickly integrating findings from novel imaging sets. This

becomes especially important as current imaging modalities

continually make technical improvements.

Another strategy for increasing data harmonization is the

development and implementation of a common data model

system, in which models developed at one institution can be

shared and easily implemented at another, thereby reducing the

time and cost to replicate studies and enabling model validation

without the exchange of patient data.89 For example, the Obser-

vational Health Data Science and Informatics program has cre-

ated a common data model as part of the Observational Medical

Outcomes Partnership (OMOP) that was used to show the

power of large-scale multi-institutional observational research.

In OMOP, a variety of disparate clinical data streams are

mapped to an internal system of standardized vocabularies and

ontologies. This has facilitated much easier multi-institutional

studies as well as replication efforts, as demonstrated by a

recent slew of powerful and innovative research using such

models. For example, using a subset of the over 50 databases

containing over 600 million patient records, treatment trajec-

tories for patients with type 2 diabetes mellitus, hypertension,

and depression were evaluated over a period of 11 years in 4

countries.90 In cardiology, the standardization of data sets to

OMOP allowed the authors of the Large-Scale Evidence Gen-

eration and Evaluation across a Network of Databases

(LEGEND-HTN) study to compare antihypertensive drug

treatments for 4.9 million patients across 9 observational data-

bases.91 The largest of its kind to date, the study was able to

evaluate the effectiveness and safety of many drugs at scale
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while mitigating internal bias from individual sites.91 In addi-

tion to better facilitating replication efforts, harmonized data

structures can enable other large-scale study frameworks, such

as federated learning, where models built on one site can be

refined using data for another, thereby making them more

generalizable.92

Applying ML Principles in Cardiac
Pharmacology

Among the most powerful applications of ML in cardiology is

the ability to tailor pharmacotherapies administered to

patients with CVD and optimize individual response. As

multi-omics approaches become more common, understand-

ing patient-specific pharmacologic regimens may become

more mainstream.93 By applying the principles outlined in

this article, clinicians and researchers can work hand in hand

to tailor pharmacotherapies and further improve cardiovascu-

lar clinical outcomes. As an example, one relevant clinical

question pertains to better elucidating the variability of

patient response to different antihypertensive drugs. A multi-

disciplinary team, consisting of both computational and clin-

ical experts, can develop a research framework to study this

question and produce results that may be widely applicable

for both researchers investigating the pathophysiologic under-

standing of hypertension and clinicians who are treating

affected patients on the front lines. Data sets can be generated

from multiple medical centers incorporating wide-ranging

clinical and genomic data in a common structure that may

serve as a model for other similar research endeavors moving

forward. Utilizing this foundation, ML algorithms can be used

to uncover optimal drug regimens and treatment doses for a

given individual and identify which genetic, transcriptomic,

or other patient-specific factors contribute to the variability of

success seen with different drug regimens. Communicating

these results in a clear and concise way, so individuals from

multiple disciplines can digest findings would also serve to

enhance the implementation of these discoveries into clinical

and institutional workflows.

Additionally, efforts utilizing ML for drug discovery94 or

repurposing95 have paved the way for more streamlined ther-

apeutic agent development that is both efficacious and cost-

effective. As a recent study noted, the current standard in drug

development is extremely costly, and the clinical success prob-

ability for bringing a drug through phase 1 to approval was

estimated to be less than 12%.96 Machine learning can alleviate

some amount of risk associated with these endeavors by auto-

mating the selection of compounds with optimal properties and

promising molecular structures97 faster and more accurate.

Additionally, the process of evaluating a library of either pre-

viously approved drugs or those drugs currently in trials for

application toward a new indication is a quintessential feature

of drug repositioning. This is often a very tedious process, and

ML-based feature engineering can be applied to identify chem-

ical information that would be useful to prioritize for clinical

investigation.98 These principles can be applied to develop or

reposition drugs to more optimally treat CVD.

Developing a Path for Supporting Safe
but Impactful Innovation

An important consideration for the production of clinically

impactful ML-based cardiology research is Food and Drug

Administration (FDA) approval of products. This subject has

received insufficient attention from the biomedical ML com-

munity to date. By definition, Software as a Medical Device

(SaMD) is any software that is intended for medical purposes

such as diagnosis, prevention, monitoring, or treatment of a

disease, injury, or physiological process.99 Machine learning-

based technologies fall under regulations of SaMD and there-

fore must provide evidence supporting a valid clinical use case

as well as both analytical and clinical validation.100 This 3-part

evaluation examines whether (1) there is a valid clinical asso-

ciation between the SaMD output and the target clinical con-

dition; (2) the SaMD correctly processes input data to generate

an accurate, reliable, and precise output; and (3) this output

achieves the intended purpose in the target population in the

context of clinical care. This rigorous regulatory process is

meant to ensure the safety of patients and the effectiveness of

the tools, thereby promoting public trust and sustainability of

SaMD. By designating SaMDs their own regulatory pathway,

the FDA has provided specific guidance documents and a clear

path to approval. Based on our search (see Supplemental Mate-

rials), since the FDA began approving AI-based technologies in

2014, there have been 16 cardiology SaMDs approved, with

applications in arrhythmia detection and EKG using smart

phones101 or smart watches102 to detection of ventricle function

from MRIs (Figure 1).

It should also be noted that SaMDs (and to some extent,

FDA approvals) will likely require industry investment and

thus reliable financial incentives for development of the tech-

nology at hand. This idea is somewhat analogous to the process

of commercialization of pharmaceuticals—although many dis-

coveries leading to new medications begin in academia, the

onerous process of furthering drug development, obtaining reg-

ulatory approval, and marketing the compound near-

universally requires commercial partners. There is little reason

to believe that the development and marketing of AI-enabled

products will follow any different path. Indeed, the high ratio of

publications to products suggests this is the case.64 Missing in

many AI publications to date are thorough consideration of

how such a product may be marketed and used in the clinical

setting. For example, consider the case of EHR-based predic-

tive algorithms. Generally, this type of academic work has

focused upon extracting, cleaning, and utilizing EHRs to build

predictive models. This process is likely not portable between

different institutions or EHR vendors due to the inherent com-

plexity of hospital and medical system IT infrastructure.

Furthermore, there exists little academic work demonstrating

how real EHR data streams may be accessed or adapted with

industry standard practices for database technologies and
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information security. Finally, little work to date has considered

how such predictive models will be presented to clinicians and

effectively adopted into clinical workflows. In many cases,

these present important and unresolved problems for the clin-

ical implementation of ML algorithms.

The Path to Prospective Investigation

Despite the relative lack of cardiology-related ML algorithms

currently deployed in practice, there are a number of studies

that set the stage for more prospective investigations and could

lead to integration into the clinic. In CVD prevention, an ML-

based model was built to accurately identify patients who could

benefit from statin therapy from the Multi-Ethnic Study of

Atherosclerosis (MESA) cohort.103 In a subsequent study,

Johnson et al retrospectively applied an ML algorithm to pre-

dict atherosclerotic plaque responsiveness to rosuvastatin ther-

apy as measured by optical coherence tomography,104 which

could indicate a path forward to precision-based pharmacother-

apy for patients with CVD. In heart failure, ML has been used

to subtype HFpEF,27 and ML-based technology has been

shown to accurately assess transthoracic echocardiography

results.51,105 In cardiovascular imaging, Doeberitz et al utilized

a deep learning ML framework to calculate coronary computed

tomography angiogram-derived fractional flow reserve in

attempts to more accurately predict future ACS within 3 years

as compared to stenosis grading alone.106 The ML algorithms

have also been used in TAVR assessment by retrospectively

predicting overall inhospital mortality in patients with TAVR

.107 Perhaps the most notable achievements with ML in cardi-

ology have surrounded cardiac electrophysiology, in which

algorithms have been developed to predict subclinical paroxys-

mal AF in patients with normal sinus rhythm108 and the like-

lihood of hypoglycemia in patients based principally on

telemetry tracings.62

Though powerful proof of concepts, the studies outlined above

were largely retrospective in nature. In order to successfully

embed ML algorithms into everyday practice, this work must

be prospectively validated. Prospective ML-based cardiovascular

work is beginning to emerge largely centered around the use of

wearable devices.109 However, despite cardiology’s reputation as

a data-rich specialty, up until 2019, cardiovascular-related

trials encompassed only 11.75% of overall ML-affiliated

clinical trial output (Figure 2A, see Supplementary Materi-

als for more information). Furthermore, these studies have

taken place in a relatively small number of countries world-

wide (Figure 2B, see Supplementary Materials for more

information).

There are a number of studies in other clinical domains that

effectively demonstrate prospective ML trials. In a recent

Figure 1. Food and Drug Administration approval of AI-based technologies in cardiology. The FDA has cleared several AI-based medical
devices in cardiology that perform tasks such as arrhythmia detection and analysis of heart mechanics. These technologies utilize a variety of data
modalities, including ECG recordings, imaging studies, and wearable sensor data. See Supplemental Materials for information on how these data
were compiled. AI indicates artificial intelligence; FDA, Food and Drug Administration; ECG, electrocardiogram.
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study, Wang et al performed a double-blind randomized con-

trol study for implementation of a colonoscopy with computer-

aided detection (CAD) framework.110 Here, they prospectively

enrolled patients undergoing a screening colonoscopy and pro-

vided the treating endoscopists with either the ML-predicted

risk estimates or a sham value, that is, a randomly generated

number. The primary outcome of this work was adenoma

detection rate, and the researchers found the CAD system sig-

nificantly outperformed the sham group for detection (34% vs

28%). Additionally, McCoy and Das designed and implemen-

ted an ML-based sepsis prediction algorithm within a medical

center.111 In their work, they compared the rates of sepsis-

related outcomes, specifically inhospital mortality, length of

stay, and 30-day readmission rates, between pre- and postim-

plementation. They found a significant reduction of mortality

(60.24%), length of stay (9.55%), and 30-day readmission

(50.14%) when using their algorithm compared with preimple-

mentation values.

Creating Digestible Results and a Culture
of Sustainable Innovation

Perhaps one of the most pervasive obstacles to the introduction

of ML in mainstream medical practice is the relative lack of

transparency when evaluating and publishing results.112

Though ML techniques are powerful and can be highly accu-

rate, it is often challenging to trace how predictions are

obtained. In this way, ML results are not always readily diges-

tible by the general public. Over time, this may cause a lack of

trust in both clinicians unfamiliar with ML principles and

patients who are attempting to decide between various thera-

peutic modalities.113 Recent guidelines place a substantial

focus on enhancing clarity for practitioners,114 and there are

a number of efforts currently underway to help make ML mod-

els generally more interpretable,115 including those utilized

within the clinical space. In fact, a whole discipline has been

developed that is dedicated to the issue of the interpretability of

models for implementation.

While the complexity inherent to ML research could repre-

sent a substantial barrier for mainstream ML utilization in the

clinical setting, some believe that efforts should be less focused

on trying to interpret black-box models and instead focus spe-

cifically on algorithms that are interpretable by nature.116 An

alternative point of view is that demystifying the black box is

not always necessary and that, with rigorous study design, the

field should become receptive to results from such algorithms

without interpretable explanations.117

Either way, an added layer of complexity occurs when con-

sidering the doctor–patient relationship. Patients seek the

expert opinion of their physician and are frequently offered

various treatment options for managing acute or chronic dis-

ease. This process becomes extremely challenging when phy-

sicians are unable to readily translate the results of ML-based

clinical research to the care of their patients. This leads to an

inability to fully engage in the shared decision-making process,

which can lead to a sense of overwhelming responsibility for

the patient and a compromised therapeutic alliance between the

physician and the patient. For example, it is already challen-

ging for a patient to decide whether to proceed with prophy-

lactic mastectomy based on her breast cancer susceptibility

risk, let alone make that decision without her doctor being able

to describe the evidence characterizing her increased risk

because its involvement with ML. In cardiology, similar dis-

cussions could occur in patients deciding on whether to pursue

A B

Figure 2. A, The trend of ML-affiliated clinical trials per year: cardiovascular-related trials against all other clinical domains. These trials include
those who are active, recruiting, enrolling, or completed. In total, 47 (11.75%) of these trials are cardiovascular-related compared to 353 of all
others combined. Data were compiled from https://clinicaltrials.gov (see Supplementary Materials or https://github.com/BenGlicksberg/
JCPT_Review_2020). B, The number of cardiovascular-related ML clinical trials across the world. The distribution of cardiovascular-related
clinical trials that utilize some form of ML by country. These trials most commonly occur within the United States (n ¼ 16), followed by China
(n ¼ 8), and then the United Kingdom (n ¼ 5). Data were compiled from https://clinicaltrials.gov (see Supplementary Materials or
https://github.com/BenGlicksberg/JCPT_Review_2020). ML indicates machine learning.
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anticoagulation for their atrial arrhythmia, which cholesterol-

lowering medication to take, whether to undergo an invasive

stenting procedure based on myocardial infarction risk, or

whether to undergo TAVR as opposed to open aortic valve

replacement based on an ML-based mortality or periprocedural

heart block risk calculator. In this way, lack of familiarity with

ML among clinicians is problematic. Essentially, no curricula

teaching medical students, residents, or fellows about ML or

how to critically evaluate ML-related research papers currently

exist.118,119 It is essential to begin introducing ML concepts

within the modern-day medical education curriculum, and

carefully designed systems should be developed to appropri-

ately convey output of ML risk models during patient interac-

tions, perhaps through the use of interactive dashboards.120

These tools should emphasize the need for ML literacy among

trainees and clinicians rather than the need for classroom- or

program-wide ML expertise. Clinicians should be familiar

enough with ML to consider it a useful tool in their arsenal

when deciding on the most appropriate screening, diagnostic,

and therapeutic modalities for their patients. In sum, creating a

culture of comfortability among clinicians and patients regard-

ing ML algorithm results is not only important but vital to the

success of making ML more mainstream in health care moving

forward.

Conclusions

Despite immense cardiovascular research breakthroughs over

the past few decades, substantial challenges and questions per-

taining to cardiac pathophysiology and clinical management

remain.121 Not only is CVD the most prevalent killer in the

United States and around the world, it is also multifactorial and

highly complex in nature. These challenges have necessitated

the development of novel methods for scientific exploration

and thorough data analysis. Simultaneously, improvements in

computing power and data storage have coincided with more

streamlined electronic medical documentation, leading to

refined data storage methods. Machine learning represents a

uniquely promising avenue to better understand pathophysiol-

ogy, analyze increasingly large and complex sets of data, and

ultimately improve medical screening, diagnosis, and therapeu-

tics for the millions of patients suffering from acute and chronic

comorbidities. Despite large institutional ML investment, sub-

stantial promise for reduced health-care expenditure, and the

potential for a fundamental transformation in the way disease is

understood and managed, there has been a noticeable lack of

impactful published ML-based clinical research that has been

successfully translated into clinical practice. This trend is par-

ticularly true in cardiology, despite its status as a data-rich

specialty. Reasons for this are multifactorial but include poor

project development, lack of complete and uniformly entered

data sets, poorly transparent results, and an overall lack of

clinician and patient comfortability with ML concepts. The

amount of hype associated with ML juxtaposed against the

relative dearth of clinical impact poses a serious threat to bio-

medical ML’s growth and reputation. This has a direct impact

on ML’s utility in medicine. With the advent of new reimbur-

sement models, including pay for performance methods such as

the Merit-Based Incentive Payment System and the Hospital

Readmissions Reduction Program,122 health-care institutions

are being incentivized to demonstrate improved outcomes or

other metrics to justify investment. Perhaps even more impor-

tantly, clinicians who have yet to witness clinical impact are

unlikely to devote the time and energy necessary to learn ML

principles and equip themselves to critically evaluate relevant

ML research publications. These obstacles could stifle the

field’s enormous potential. Without a change in approach,

patients who may have benefitted from this technology would

not be receiving optimal care, and ML could come to represent

a missed opportunity rather than a transformative technology.

In this article, we have summarized recent ML-based research

efforts in cardiology and have outlined strategies for the suc-

cessful production and communication of clinically impactful

and sustainable results. Machine learning has immense poten-

tial and may represent the most fruitful way to understand CVD

over the long-term.
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