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The electrocardiogram (ECG) is a widely used medical test, 
consisting of voltage versus time traces collected from sur-
face recordings over the heart1. Here we hypothesized that a 
deep neural network (DNN) can predict an important future 
clinical event, 1-year all-cause mortality, from ECG voltage–
time traces. By using ECGs collected over a 34-year period in a 
large regional health system, we trained a DNN with 1,169,662 
12-lead resting ECGs obtained from 253,397 patients, in which 
99,371 events occurred. The model achieved an area under the 
curve (AUC) of 0.88 on a held-out test set of 168,914 patients, 
in which 14,207 events occurred. Even within the large subset 
of patients (n = 45,285) with ECGs interpreted as ‘normal’ by 
a physician, the performance of the model in predicting 1-year 
mortality remained high (AUC = 0.85). A blinded survey of 
cardiologists demonstrated that many of the discriminating 
features of these normal ECGs were not apparent to expert 
reviewers. Finally, a Cox proportional-hazard model revealed 
a hazard ratio of 9.5 (P < 0.005) for the two predicted groups 
(dead versus alive 1 year after ECG) over a 25-year follow-up 
period. These results show that deep learning can add sub-
stantial prognostic information to the interpretation of 12-lead 
resting ECGs, even in cases that are interpreted as normal  
by physicians.

The prediction of risk is fundamental to the practice of medicine. 
Within cardiovascular medicine, for example, risk scoring systems 
are widely used to support a variety of important individual patient 
care decisions, such as determining the intensity of medical therapy, 
helping to decide whether invasive therapies are warranted, decid-
ing on the use of advanced heart failure therapies and guiding an 
ischemic workup before elective surgery2–7 (Supplementary Table 1).  
Risk prediction is also important at the population level, particu-
larly within accountable care organizations and other value-based 
care models. These systems must find ways to reduce costs while 
maintaining quality8, and risk prediction is critical to this effort 
by helping to optimally direct resources to the patients who need 

them most. Despite these needs, existing risk prediction tools are far 
from perfect9, and cardiovascular outcomes could be improved with  
better risk prediction.

One option for improving risk prediction in cardiovascular dis-
ease is through enhanced use of the 12-lead ECG10,11, which is one 
of the most widely used cardiovascular diagnostic tests. However, 
despite widespread use, the ECG has not been well adopted as a 
prognostic tool11. In fact, most cardiac scoring systems do not use 
the ECG as a variable. Those that do (TIMI2 and GRACE3, for exam-
ple) make very limited use, assessing only for the presence of ST 
segment deviation. Automated approaches to analyzing ECG data 
to provide enhanced prognostic capabilities may therefore have  
tremendous impact on cardiovascular disease outcomes.

There has been steady improvement in ECG signal processing 
over several decades12,13, with automated techniques for feature 
extraction14–16, morphology detection for heartbeat classifica-
tion17 and diagnostic capabilities for a range of conditions, such 
as arrhythmias18,19. Recently, the emergence of large clinically 
acquired ECG datasets combined with exponential growth in com-
putational power and improvements in DNNs has enabled consid-
erable advancement in the automated interpretation of ECGs20–22. 
Machine learning methods, including neural networks, have been 
explored for automated and accurate measurement of intervals 
and for feature extraction23–26. Deep learning in particular has 
recently shown promise for diagnosing abnormal heart rhythms27, 
identifying acute findings28, identifying asymptomatic cardiac dys-
function29,30 and detecting the electrocardiographic signature of 
paroxysmal atrial fibrillation in patients currently in sinus rhythm31. 
However, there are no reports of an automated method to predict 
clinically relevant future events, such as short-term mortality,  
directly from ECGs.

We hypothesized that a DNN could learn novel features in resting 
12-lead ECG voltage–time data to directly predict 1-year mortality. 
We leveraged nearly 2.3 million ECGs (an order of magnitude more 
than in previous studies) and DNNs to show that this hypothesis is 

Prediction of mortality from 12-lead electro-
cardiogram voltage data using a deep neural 
network
Sushravya Raghunath   1, Alvaro E. Ulloa Cerna1, Linyuan Jing1, David P. vanMaanen1, Joshua Stough1,2,  
Dustin N. Hartzel3, Joseph B. Leader   3, H. Lester Kirchner4, Martin C. Stumpe5, Ashraf Hafez5,  
Arun Nemani5, Tanner Carbonati   5, Kipp W. Johnson5, Katelyn Young6, Christopher W. Good7,  
John M. Pfeifer8, Aalpen A. Patel9, Brian P. Delisle10, Amro Alsaid7, Dominik Beer7, 
Christopher M. Haggerty1,7,11 and Brandon K. Fornwalt   1,7,9,11 ✉

NATURE MEDiCiNE | www.nature.com/naturemedicine

mailto:bkf@gatech.edu
http://orcid.org/0000-0001-7623-3095
http://orcid.org/0000-0002-4101-5423
http://orcid.org/0000-0001-6438-2800
http://orcid.org/0000-0002-6231-9442
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-020-0870-z&domain=pdf
http://www.nature.com/naturemedicine


Letters Nature MediciNe

true. Second, we demonstrated that a DNN has higher accuracy for 
the prediction of 1-year mortality than a model that uses the routine 
measurements and patterns identified by modern automated ECG 
systems and confirmed by cardiologists. Third, we showed that the 
predictive accuracy of a DNN is preserved even in the large subset 
of ECGs interpreted as normal by physicians. Finally, we showed 
that the model retains predictive ability for decades, well beyond 
1 year.

We extracted all 12-lead ECGs from the electronic records of 
a large regional US health system (Geisinger). A standard 12-lead 
ECG has 15 voltage–time traces, including traces of 2.5 s in dura-
tion for all 12 leads and traces of 10 s in duration for leads V1, II and 
V5. After certain exclusions (illustrated in Extended Data Fig. 1),  
there were 2,338,833 ECGs from 536,661 patients available for  
the study. We split the dataset into a cross-validation (CV) dataset 
(60% of the data) and holdout test dataset (40% of the data). The 
CV dataset included 1,169,662 ECGs from 253,397 patients used for 
training. The holdout test dataset consisted of 168,914 ECGs with 
14,207 events, where a single random ECG was chosen for each 
patient. We trained a DNN to aggregate the spatial and temporal 
features of the voltage–time signals to predict 1-year mortality. The 
DNN architecture is illustrated in Extended Data Fig. 2. A single 
model (M0) was trained on the CV dataset and evaluated on the 
holdout set. Additionally, fivefold cross-validation was performed 
within the CV dataset to evaluate performance (models M1–M5). 
Patients were not shared between training and test sets (details in 
the Methods).

The area under the receiver operating characteristic curve (AUC) 
for predicting 1-year all-cause mortality was 0.855 (model M0; CV 
(M1–M5): 0.859 ± 0.001) when using the ECG voltage–time traces 
alone. Performance improved to 0.876 (CV: 0.870 ± 0.006) when age 
and sex were added as additional input features (Fig. 1a, blue bars). 
The model trained with all 15 ECG voltage–time traces together 
provided the best AUC in comparison to models derived from any 
single lead (Fig. 1b). Models derived from the 10-s tracings had 
higher AUCs than models derived from the 2.5-s tracings, demon-
strating that longer duration of the data likely provides more infor-
mative features to the model (Fig. 1b).

We compared the model performance of the DNN trained using 
voltage–time traces to that of baseline models trained using only age 
and sex as features and traditional interval measurements and pat-
terns/diagnoses (ECG measures) as features. ECG measures were 
derived from the clinical reports, including 9 continuous numerical 
measurements (for example, QRS duration) and 31 categorical pat-
terns (for example, left bundle branch block) (complete list in the 
Methods). The baseline models with tabular features were trained 
with an XGBoost (XGB) classifier32,33 to predict 1-year mortal-
ity. The AUC of the XGB model with age and sex was 0.774 (CV: 
0.772 ± 0.002) (Fig. 1a, gray bars). The AUC of the XGB model with 
ECG measures was 0.817 (CV: 0.820 ± 0.002), which improved to 
0.860 (CV: 0.859 ± 0.002) with the addition of age and sex (Fig. 1a, 
orange bars). Both of these results were significantly lower than the 
AUCs of the corresponding DNN models (P < 0.05 from confidence 
intervals of average bootstrapped difference in AUC), although the 
good performance of the ECG measures model is notable (Fig. 1a, 
orange bars) and could have potential value for scenarios lacking 
digitized traces. To compare with common clinical risk scoring 
methods, we implemented and evaluated the predictive perfor-
mance of the Framingham risk score (FRS)34 and the Charlson 
comorbidity index (CCI)35. The AUCs for these models were 0.648 
and 0.816, respectively, again demonstrating inferiority to the DNN 
model (P < 0.05 from confidence intervals of average bootstrap dif-
ference in AUC when compared to the DNN models).

The model was also able to predict 1-year mortality from ECGs 
without easily recognizable high-risk features. To show this, we 
evaluated the performance of the model in ECGs interpreted as nor-
mal by a physician. This set included only ECGs lacking any diag-
nostic abnormalities. Note that an ECG interpreted as normal does 
not necessarily imply that the ECG was collected from a patient 
without cardiovascular disease. There were 42,285 normal and 
124,378 abnormal ECGs in the holdout test set. For normal ECGs, 
the DNN model (trained to predict 1-year mortality from all the 
ECGs) yielded AUCs of 0.804 (CV: 0.801 ± 0.009) and 0.849 (CV: 
0.833 ± 0.001) for ECG traces alone and with the addition of age 
and sex, respectively; for abnormal ECGs, the model yielded mean 
AUCs of 0.841 (CV: 0.846 ± 0.001) and 0.862 (CV: 0.855 ± 0.006), 
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Fig. 1 | Summary of model performance as area under the receiver operating characteristic curve for predicting 1-year mortality. a, The mean AUC for 
the indicated input data, including (i) clinically acquired ECG measures (9 numerical values and 31 diagnostic labels), (ii) ECG voltage–time traces only, 
(iii) age and sex alone, (iv) ECG measures with age and sex, and (v) ECG voltage–time traces with age and sex. Models for (i), (iii) and (iv) used XGB, and 
models for (ii) and (v) used a DNN. ‘Normal’ refers to the ECGs in the test set labeled as normal by the original interpreting physician at the time of ECG 
acquisition, ‘abnormal’ refers to any ECGs not identified as normal in the test set and ‘all’ includes both normal and abnormal ECGs in the test set. b, The 
relative performance of the DNN models using single leads as input (sorted by increasing performance). The mean AUC of models M1–M5 (derived from 
fivefold cross-validation) are shown as the bar heights, while individual data points for each of the five models are shown as a red ‘x’; black dots represent 
the AUC of model M0 (trained on 60% of the data and tested on the 40% holdout set). ‘2.5 s’ and ‘10 s’ refer to the duration of the voltage–time traces 
used for the model. Performance as a measure of AUPRC is shown in Extended Data Fig. 3.
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respectively (Fig. 1a). The DNN using ECG traces generally had 
better performance than the XGB model using ECG measures for 
both normal and abnormal ECGs, although the confidence inter-
vals of the mean AUCs did overlap for the case of normal ECGs with 
age and sex. Performance as a measure of area under the precision 
recall curve (AUPRC) is shown in Extended Data Fig. 3.

To determine whether the model performance was robust with 
respect to patient comorbidities, we completed subanalyses across 
a range of cardiovascular diagnoses and clinical contexts within the 
holdout test set. Generally, model performance was consistently 
maintained across these different scenarios (Table 1; additional details 
available in Table 2). We also approximated a test in an independent 
clinical setting by dividing all data by hospital or clinic of acquisition 
and separately training and testing across sites. The model trained 
with data from our largest hospital (567,788 ECGs from 161,152 
patients) and tested on data from the rest of the Geisinger system 
(292,671 patients with a single random ECG chosen for each patient) 
yielded AUCs of 0.852 (without age and sex included as variables) 
and 0.870 (with age and sex included as variables).

Although the DNN model demonstrated good performance, 
model interpretability is a challenge. We used two techniques 
to highlight features used by the model that may correlate with 
clinically known ECG patterns that are useful for the prediction 
of mortality. First, we summarized patient demographics and the 
distribution of ECG measures by class predictions in the holdout 
test set (based on the M0 model) in Table 2. The table demon-
strates that ECG findings that are correlated with a higher risk of 
mortality (for example, atrial fibrillation, left bundle branch block 
and prior infarct) are much more common in those predicted to 
die within 1 year. Second, we implemented a guided gradient 
class activation mapping (Grad-CAM)36,37 method to display the 
neural-network-based model activations that contributed to a pre-
diction of mortality within 1 year. As an example, we hypothesized 
that ECGs showing acute anterior ST segment elevation myocardial 
infarction (STEMI) would show higher saliency at the sites of ST 
segment elevation. Extended Data Fig. 4 illustrates that indeed ele-
vated ST segments of leads V2 and V3 were highlighted as salient, in 
conjunction with a high likelihood risk score prediction for 1-year 

mortality, for three patients with anterior STEMI who died within 
1 year of the ECG. These findings demonstrate initial promising 
results for saliency maps based on the guided Grad-CAM approach 
(details in the Methods).

To further investigate predictive performance within the overall 
dataset and the subsets of normal and abnormal ECGs, a Kaplan–
Meier survival analysis was performed using follow-up data avail-
able in the electronic health record (EHR) for the chosen operating 
point on the ROC curve (Fig. 2 and Table 2). The performance char-
acteristics of the model at different operating points are summarized 
in Supplementary Table 2. For normal ECGs, the median survival 
times of the groups predicted alive and dead at 1 year (model M0 on 
the holdout set) were >25 and 7 years, respectively, and, for abnor-
mal ECGs, these were 21 and 4 years, respectively (Fig. 2b). A Cox 
proportional-hazard regression model was fit, and the hazard ratios 
with 95% confidence intervals were 8.1 (7.9–8.2) (CV: 8.1 (7.4–9.0)) 
in all ECGs, 6.8 (6.6–6.9) (CV: 6.8 (6.2–7.6)) in abnormal ECGs and 
9.5 (9.0–10.0) (CV: 9.1 (7.3–11.0)) in normal ECGs (all P < 0.005) 
when comparing those predicted by the DNN to be alive versus 
dead at 1 year after ECG. Thus, the hazard ratio was largest in the 
subset of normal ECGs, and the prediction of 1-year mortality from 
the DNN was a significant discriminator of long-term survival for 
up to 25 years after the initial ECG.

To further explore the predictive characteristics within the sub-
set of normal ECGs, we hypothesized that, among patients with 
normal ECGs who died within 1 year, the burden of cardiac-related 
mortality would be higher in cases correctly predicted to die by the 
model than in those who died within 1 year despite being predicted 
to survive. We completed a blinded physician chart review to clas-
sify cause of death in 266 age- and sex-matched patients from these 
two groups within the holdout test set to define the primary cause of 
death as cardiac, non-cardiac or unknown. We did not find evidence 
that the proportion of cardiac-related deaths was different between 
these groups (3.8% versus 4.5% for predicted dead and alive, respec-
tively), suggesting that the predictive features may extend beyond 
cardiac disease alone.

Finally, we investigated whether the features learned by the 
model are visually apparent to cardiologists and whether they are 

Table 1 | Summary of the performance of the DNN model (M0) trained with voltage–time traces, as well as age and sex, in different 
scenarios 

Data ECGs (%) Model performance

All Normal Abnormal

AUC AUPRC AUC AUPRC AUC AUPRC

Holdout set (168,914 ECGs)

 All 100 0.876 0.425 0.849 0.196 0.862 0.442

Clinical context (168,914 ECGs available)

 Inpatient 19 0.791 0.546 0.791 0.351 0.779 0.555

 Emergency 8 0.862 0.337 0.825 0.191 0.852 0.357

 Outpatient 38 0.843 0.237 0.779 0.075 0.836 0.256

 Unknown 35 0.882 0.336 0.864 0.125 0.867 0.351

Comorbidities (167,816 ECGs available)

 Coronary artery disease 8 0.811 0.488 0.769 0.185 0.804 0.495

 Hypertension 39 0.850 0.415 0.821 0.176 0.837 0.430

 Heart failure 2 0.734 0.605 0.779 0.555 0.729 0.606

 Diabetes 13 0.825 0.426 0.812 0.220 0.807 0.437

 Without the above phenotypes 28 0.891 0.417 0.861 0.208 0.880 0.436

The holdout set corresponds to all data available in the 40% of unique patients held out before the beginning of the study; clinical context corresponds to the patient setting at the time of ECG acquisition; 
and comorbidities corresponds to patients with known clinical comorbidities at the time of ECG acquisition. Data shown for both clinical context and comorbidities refer to the patients in the holdout set. 
Patient demographics are shown in Table2. DNN, deep neural network; AUC, area under the receiver operating characteristic curve; AUPRC, area under the precision recall curve; ECG, electrocardiogram.
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Table 2 | Patient demographics and summary of data distribution across the predicted groups for the DNN model (M0) trained with 
ECGs, as well as age and sex

Holdout test dataset (total) Holdout test dataset

Predicted dead Predicted alive

ECGs (n) 168,914 38,702 130,212

Events (n) 14,207 11,004 3,203

Age (years) 58 ± 18 73 ± 14 53 ± 17

Sex (male in %) 47 50 46

Patterns (31 categorical variables) as % of ECGs

 Ventricular tachycardia 0.04 0.2 0

 SVT 0.3 0.9 0.1

 Atrial flutter 0.6 1.9 0.2

 Atrial fibrillation 4.4 14.5 1.5

 Complete block 0.04 0.1 0.02

 Pacemaker 1.7 5.4 0.6

 Left BBB 1.7 4.8 0.7

 Incomplete left BBB 0.2 0.6 0.1

 Second-degree AV block 0.08 0.2 0.05

 Intraventricular block 1.3 3.2 0.7

 Fascicular block 2.2 5.4 1.3

 PVC 4.5 10.5 2.7

 Sinus tachycardia 7.9 17.9 5.0

 Ischemia 6.0 13.4 3.8

 Right BBB 3.9 8.6 2.5

 PAC 3.7 8.3 2.4

 Left axis deviation 6.3 13.5 4.2

 Prolonged QT 3.4 6.7 2.3

 Low QRS voltage 3.9 7.8 2.8

 Prior infarct 13.6 24.8 10.2

 First-degree AV block 4.2 7.2 3.4

 Acute MI 0.6 1.0 0.5

 Nonspecific ST abnormality 7.5 12.3 6.0

 Right axis deviation 2.0 3.0 1.7

 LVH 6.8 9.7 5.9

 Nonspecific T-wave abnormality 10.5 14.9 9.2

 Other bradycardia 0.08 0.1 0.08

 Incomplete right BBB 3.4 2.9 3.6

 Sinus bradycardia 14.6 5.8 17.3

 Normal 26.8 6.3 32.9

 Early repolarization 0.6 0.1 0.7

ECG measurements (9 continuous variables)

 QRS duration (ms) 93 ± 20 101 ± 28 91 ± 15

 QT (ms) 393 ± 44 388 ± 60 395 ± 38

 QTC (ms) 436 ± 34 458 ± 42 429 ± 28

 PR interval (ms) 155 ± 40 151 ± 60 156 ± 31

 Ventricular rate (bpm) 77 ± 19 88 ± 23 73 ± 16

 Average RR interval (ms) 824 ± 183 728 ± 193 852 ± 170

 P axis 47 ± 25 48 ± 31 47 ± 23

 R axis 27 ± 43 16 ± 58 30 ± 37

 T axis 45 ± 42 63 ± 63 40 ± 31

Predicted groups were identified using an optimal threshold on the receiver operating characteristic curve from the training data with the highest point on the iso-accuracy line. Continuous measurements 
are presented as the mean ± s.d. n, number of samples; ms, milliseconds; bpm, beats per minute; PVC, premature ventricular contractions; PAC, premature atrial contractions; SVT, supraventricular 
tachycardia; MI, myocardial infarction; BBB, bundle branch block; LVH, left ventricular hypertrophy; AV, atrioventricular.
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clinically interpretable. To do this, we randomly chose 100 sets of 
paired normal ECGs from the holdout test set. Each pair consisted 
of a true positive (normal ECG from a patient correctly predicted 
by the model to die within 1 year) and a true negative (normal ECG 
from a patient correctly predicted by the model to be alive at 1 year), 
matched for age and sex. We surveyed ten cardiologists, asking 
them to identify which ECG of each pair was linked to 1-year mor-
tality. The cardiologists had accuracies of 61–78% (22–56% above 
random chance) for this initial task. After allowing each cardiolo-
gist to study a separate dataset of 100 paired ECGs labeled to show 
the outcome, their prediction accuracy upon repeating the original 
blinded survey of 100 paired ECGs was 60–93% (20–86% above 
random chance), demonstrating an average relative improvement 
in performance of 13% after seeing the model results (P = 0.017). 
The cardiologists reported that three features were useful for the 
prediction of mortality: higher heart rates, the quality of the ECG 
baseline and evidence of slight left atrial enlargement (Extended 
Data Fig. 5).

We chose to predict 1-year all-cause mortality as a target end-
point because it is well defined, readily available and clinically 
meaningful. We believe that mortality prediction is useful in 
numerous clinical contexts. In the outpatient setting, primary care 
physicians and cardiologists use risk prediction tools to assess 
the safety of elective surgical procedures and to guide therapy for 
both primary and secondary prevention of cardiovascular disease.  
A ‘normal’ ECG may be giving false reassurance in these settings. 
In the emergency department and inpatient setting, the model may 
be able to help stratify patients by risk who present with chest pain 
or nonspecific symptoms that might be an anginal equivalent. For 
elderly patients and those with multiple comorbidities approach-
ing the end of life, a prediction of 1-year mortality may help guide 
decisions surrounding palliative care and the use of invasive and/or 
high-risk procedures. Finally, when applied at the population level, 
our model could enable health systems and insurance providers to 
better understand and optimally deploy resources to their patient 
population. The Kaplan–Meier curves show that the model clearly 
identifies a high-risk population, even in cases of false positives 
(that is, despite being a ‘false positive’ for 1-year mortality, these 
patients maintain significantly elevated risk of death over 25 years). 

This high-risk population may benefit from targeted interventions 
with the goal of improving outcomes. In all of these hypothetical 
settings, we expect the model to complement, not replace, physician 
judgment.

The findings from our physician survey have two insights to 
offer in this regard: (1) while the physicians were able to correctly 
identify many of the normal ECGs linked to mortality in this ideal-
ized setup, not all cases were visually apparent and thus the model 
supplemented physician insight and (2) physician performance 
improved slightly after reviewing the model predictions, suggesting 
the potential for complementary gains through human–machine 
interaction. In the clinical scenarios listed above, the model could 
be used as a standalone tool, integrated with existing risk scores or 
further developed into a new comprehensive risk scoring system 
(for example, by adding additional input features). Future work is 
needed to ensure model generalizability to these different clinical 
contexts, but evidence presented in this study suggests that it will 
prove useful in varied clinical settings.

There are several limitations to acknowledge. We applied mini-
mal restrictions on the included ECG data, such as removing poor 
tracings and studies without the standard three 10-s rhythm strips. 
These exclusions may have introduced bias; however, this risk is 
minimized by the large size of the dataset and the demonstrated 
performance across various clinical contexts (Table 1). Additionally, 
the neural network design currently precludes full interpretability, 
so the ability to define the basis for model predictions is limited. 
Available techniques, including Grad-CAM, provided evidence that 
the model was identifying clinically relevant features (Extended 
Data Fig. 4), but full interpretability will be a focus of future work.

In summary, we leveraged a large set of ~2.3 million ECGs 
collected from 536,661 patients over a period of 34 years to dem-
onstrate the potential for DNNs to automatically predict a highly 
clinically relevant endpoint (1-year mortality) directly from 12-lead 
ECG voltage–time data. This potential is evident through several 
important findings. First, the DNN model using voltage–time traces 
alone outperformed traditional clinical risk scores such as FRS and 
CCI, as well as another machine learning models that used a col-
lection of 40 clinical ECG features (including both numerical mea-
surements and diagnostic patterns). This suggests that the DNN is 
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able to identify novel patterns of prognostic relevance from volt-
age–time traces. Second, in addition to predicting 1-year mortal-
ity with an AUC of 0.876, the model showed substantial predictive 
ability beyond the 1-year mark. Third, despite conventional wisdom 
regarding the negative predictive value of ECGs38,39, we found that 
prediction accuracy remained high even in the large subset of ECGs 
interpreted as normal by a cardiologist. We have shown that deep 
learning has the potential to add significant prognostic informa-
tion to one of the most widely used medical tests, the 12-lead ECG, 
which with further study could prove useful in a clinical context, 
both for risk prediction and to improve outcomes.
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Methods
Detailed information on the experimental design can also be found in the Nature 
Research Reporting Summary.

ECG and patient data. The institutional review board approved this study with a 
waiver of consent, in conjunction with our institutional patient privacy policies. We 
extracted 2.7 million standard 12-lead ECG traces from our institutional clinical 
MUSE (GE Healthcare) database, acquired between 1984 and 2019. We retained 
only the resting 12-lead ECGs with voltage–time traces of 2.5 s for 12 leads and 10 s 
for 3 leads (V1, II, V5) that did not have significant artifacts and were associated 
with at least 1 year of follow-up or death within 1 year. ‘Significant artifacts’ were 
defined as being reported as a poor tracing by the automated machine analysis or 
the interpreting cardiologist, with findings statements such as ‘Poor data quality, 
interpretation may be adversely affected’. After exclusions, 2.3 million ECGs 
remained, with 60% of them stored at 500 Hz and the remaining ECGs stored at 
250 Hz. All data were resampled to 500 Hz by linear interpolation. Sixty percent of 
the data were selected as a ‘CV’ (for cross-validation) set, with the remaining 40% 
used as a holdout test set (Extended Data Fig. 1).

The quantitative measurements and findings within the final ECG clinical 
reports were parsed to identify 31 diagnostic pattern classes and 9 continuous 
ECG measurements (all detailed below). An ECG was defined to be ‘abnormal’ 
if the pattern label was flagged for at least one diagnostic abnormality. The nine 
ECG measurements were the measurements logged in the confirmed ECG reports 
that included QRS duration, QT, QTc, PR interval, ventricular rate, average RR 
interval, and P-, Q- and T-wave axes. Data for the nine variables were 88–100% 
complete. Missing values were imputed using multiple imputations by chained 
equations40. Patterns included normal, left bundle branch block, incomplete left 
bundle branch block, right bundle branch block, incomplete right bundle branch 
block, complete heart block, atrial fibrillation, atrial flutter, acute myocardial 
infarction, left ventricular hypertrophy, premature ventricular contractions, 
premature atrial contractions, first-degree atrioventricular block, second-degree 
atrioventricular block, fascicular block, sinus bradycardia, other bradycardia, 
sinus tachycardia, ventricular tachycardia, supraventricular tachycardia, prolonged 
QT, pacemaker, ischemia, low QRS voltage, intraventricular block, prior infarct, 
nonspecific T-wave abnormality, nonspecific ST abnormality, left axis deviation, 
right axis deviation and early repolarization. The 31 clinical diagnosis patterns 
were parsed from the structured findings statements on the basis of the key 
phrases that are standard within the MUSE system. This was performed by 
identifying the key phrases by thorough examination of the lookup table of MUSE 
codes and the corresponding ‘findings’ text strings that correspond to each pattern 
and, additionally, by identifying any variations in the findings text when the 
physician manually entered ‘free’ text into the findings field: for example, ‘Atrial 
flutter is present’ or ‘Atrial flutter now present’ for a positive flag and ‘Atrial flutter’ 
string match along with ‘Atrial flutter has resolved’ for a negative flag. Such a 
string-based rule set was defined for each pattern, and labels for the 31 patterns 
were generated for all ECGs. The labels were iteratively reviewed for hundreds of 
cases to ensure accuracy.

For patient demographic data, the survival time and patient age were calculated 
with reference to the date of ECG acquisition and only patients above 18 years of 
age at the time of ECG were included in this study. Patient status (dead/alive) was 
defined through a combination of EHRs and monthly updates from the Social 
Security Death Index. Moreover, data for alive patients were censored at the 
patient’s last known physical alive encounter to limit bias from incomplete records. 
Sex was also extracted from the EHR data.

ECG sampling strategy. To avoid over-representing sicker patients who undergo 
more ECGs, we selected a single ECG per patient in the test set. Rather than 
selecting the most recent (last) ECG (that is, the ECG closest to death for patients 
who died), we randomly sampled one ECG from among all the ECGs available for 
a given patient. This latter strategy was considered to be most representative of 
deploying the model on a given ECG from a new patient, which in each case will be 
at a random time point in that patient’s life. To test the consistency of the random 
sampling strategy, we repeated 50 different random selections and demonstrated 
consistency in the model performance (data not shown).

Model development and evaluation, including statistical analysis. We designed 
a convolutional neural network (model architecture illustrated in Extended 
Data Fig. 2) using five branches with the input of three leads as channels that 
are concurrent in time (branch 1: leads I, II, III; branch 2: leads aVR, aVL, aVF; 
branch 3: leads V1, V2, V3; branch 4: leads V4, V5, V6; branch 5: leads V1-long, 
II-long, V5-long). Note that each branch represents the three leads that were 
acquired at the same time (during the same heartbeats), for a duration of 2.5 s. 
In a typical 12-lead ECG, four of these groups of three leads are acquired over a 
duration of 10 s. Concurrently, the ‘long leads’ are recorded over the entire 10-s 
duration. Thus, the architecture was designed to account for these details, because 
arrhythmias in particular cause the traces to change morphology throughout the 
standard clinical acquisition.

A convolutional block consisted of a one-dimensional convolution layer 
followed by batch normalization and rectified linear unit (ReLU)41 activations. 

The first four branches and the last branch consisted of four and six convolutional 
blocks, respectively, followed by a global average pooling (GAP)42 layer.  
The outputs of all of the branches were then concatenated and connected to a 
series of six dense layers of 256 (with dropout), 128 (with dropout), 64, 32, 8 and 
1 unit(s) with a sigmoid function as the final layer. We used the Adam43 optimizer 
with a learning rate of 1 × 10−5, and batch size was set to 2,048; otherwise, all 
hyperparameters were set to default. Each model branch was computed in parallel 
on a separate GPU for faster computation. Replacing the GAP layer with long 
short-term memory44 gave similar performance for substantially longer run times; 
hence, the final model used GAP layers.

We developed a model (M0) trained on the entire CV set and five models 
(M1–M5) from fivefold cross-validation within the CV set. In a fivefold 
cross-validation, the data are split into five folds: that is, 80% of the data are used 
for training, and the remaining 20% are the test set for evaluation. The five models 
are tested on the respective unique 20% test sets. Five percent of the training 
set was identified as an internal validation set before training for tracking the 
validation loss during training to avoid overfitting by early stopping45. The models 
were evaluated by AUC, which is a robust metric of model performance that 
represents the ability to discriminate between two classes. Higher AUC suggests 
higher performance, with an AUC of 0.5 being equivalent to a random chance 
guess and an AUC of 1.0, representing perfect discrimination. The AUC for model 
M0 was reported on the holdout test set. Additionally, we also reported the mean 
and s.d. of the AUC for CV models M1–M5 to evaluate model generalizability 
and stability. The AUCs were compared by bootstrapping 1,000 instances (using 
random and variable sampling with replacement). Differences between models 
were thus defined to be statistically significant if the absolute difference in the 
95% confidence intervals was greater than zero. We also evaluated the models 
using AUPRC, computing average precision score as a weighted average of the 
precisions achieved at each threshold by the increase in recall. The operating 
point was optimized for maximum accuracy in the training set and applied on 
the respective test set. The predictions from model M0 were used to choose 
candidates for the clinical chart review for cause of death and for the data chosen 
for the visual survey by cardiologists. To compare the prognostic efficacy of the 
ECG voltage–time traces to the corresponding clinically reported ECG measures, 
we cross-validated an XGB classifier with exactly the same training, internal 
validation and test sets used for the DNNs.

The models were trained with all of the available ECGs for patients in the 
training set with their corresponding survival time frames. The test set included 
one randomly chosen ECG for each patient. The data were split such that 
the same patient was not in both the training and test sets. We evaluated loss 
(binary cross-entropy) on the internal validation set (which was approximately 
balanced for outcome class) for each epoch. The loss function was weighted to 
compensate for the imbalance in the proportion of output labels (alive/dead) 
during training. The training was terminated if the internal validation loss did 
not decrease for 10 epochs (early-stopping criteria), and the maximum number 
of epochs was set to 500.

The model was implemented using Keras (version 2.1.6-tf) with a TensorFlow 
backend (version 1.9.0) in Python (version 3.5.2), and default training parameters 
were used except where specified. For single leads as input, a single branch of the 
above-mentioned model was used. When demographic variables (age and sex) 
were added to the model, a 64-hidden-unit layer following the input layer was 
concatenated with the other branches. All training was performed on an NVIDIA 
DGX2 platform with 16 available V100 GPUs and 32 GB of RAM per GPU. When 
fit with five GPUs, each model took ~10 min per epoch.

Phenotypes. We defined four comorbidities or phenotypes, including coronary 
artery disease, hypertension, heart failure and type 2 diabetes, for patients in the 
holdout set at the time of ECG. The phenotype definitions were as follows:

 1. Coronary artery disease was defined as any of the following: a discharge diag-
nosis of STEMI or non-STEMI; a discharge diagnosis of unstable angina with 
negative biomarkers (troponin or creatine kinase myocardial band) and with 
evidence of either coronary artery disease or inducible ischemia; a history 
of percutaneous coronary intervention or coronary artery bypass grafting 
procedures; or exertional angina with evidence of coronary artery disease or 
inducible ischemia.

 2. Hypertension was defined as satisfying at least two of the following criteria: 
(i) two instances of antihypertensive medication orders; (ii) at least three 
high-blood-pressure readings (≥140 systolic or ≥90 diastolic) each over 7 d 
apart; or (iii) a diagnosis code (ICD-9 or ICD-10) for hypertension either on 
the patient problem list or on at least two clinic encounters within 2 years.

 3. Heart failure was defined using the ‘definite’ category of the eMERGE pheno-
type46. This was implemented and validated by blinded chart review within 
Geisinger EHR data.

 4. Type 2 diabetes was defined as satisfying at least two of the following condi-
tions: (i) two abnormal lab values (outpatient fasting blood glucose result 
of ≥125 mg/dl, outpatient blood glucose result of >200 mg/dl or outpatient 
HbA1c result of ≥6.5%) at least 90 d apart; (ii) two prescriptions of antidia-
betic medication at least 90 d apart; or (iii) a diagnosis of type 2 diabetes from 
either the patient problem list or a completed office visit.
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Additional validation, simulating external dataset. The ECGs were classified by 
the location where the ECG was taken as ‘GMC’ or ‘non-GMC’. GMC represented 
patients who had ECGs in Geisinger Medical Center (GMC) in Danville, PA, and 
non-GMC represented ECGs acquired at other facilities within the Geisinger 
system, comprising a mix of hospital and community clinic settings. All patients 
in the non-GMC group who were also in the GMC group were removed from 
the non-GMC group, such that there was no overlap of patients between the two 
groups. A model was trained with all ECGs relative to their events from the GMC 
group (567,788 ECGs from 161,152 patients) and tested on the non-GMC group 
(292,671 ECGs from 292,671 patients). A single random ECG for a patient was 
chosen in the test set for evaluation. The test set had 17,279 events in 292,671 
ECGs, with 1,338 events among 86,878 normal ECGs and 15,941 events among 
205,793 abnormal ECGs.

Model interpretations. Interpretable models are important to bolster 
transparency in predictions and to increase clinical acceptance. To create 
interpretable outputs for model predictions, we used a technique called guided 
Grad-CAM to objectively determine the salient regions of a particular lead 
contributing toward a mortality prediction. We achieved this by first calculating 
the gradients for each prediction score with respect to the feature maps of the 
final convolution layer for each branch36. Next, these gradients were global 
average pooled to calculate feature importance weights, which were then used to 
form a partial linearization of weights from each branch to give the Grad-CAM. 
We also calculated rectified gradients across each individual lead with 
Guided-Backpropagation37 and finally multiplied pointwise with the Grad-CAM 
output to give the ECG’s guided Grad-CAM results. Via peak-to-peak detection47, 
we calculated the average heartbeat along with the respective guided Grad-CAM 
values for each lead with a total time step of 600 ms, to create the ‘average’ ECG 
waveform for each lead and patient. Finally, these maps were averaged across 
patients to generate saliency maps.

Some limitations of using the guided Grad-CAM approach include 
generalization of this approach across large cohorts where the saliencies across 
patients and varying average heartbeat waveforms can nullify confounding 
activations. This may result in average class activation maps with lost pertinent 
information, providing limited interpretations. The current methods for 
interpretability based on class activations are tuned for individual patients, while 
future work can include techniques that generalize model interpretability well 
among large patient cohorts and across multiple disease states.

Survival analysis. We performed Kaplan–Meier survival analysis48 with the 
available follow-up data stratified by the DNN model prediction, using an optimal 
operating point for the models. The data were censored on the basis of the most 
recent encounter. We fit a Cox proportional-hazard model49 regressing mortality 
on the DNN-model-predicted classification of alive or dead in the subset of normal 
ECGs and in the subset of abnormal ECGs. The hazard ratios with 95% confidence 
intervals were reported for all data, the normal subset and the abnormal subset 
for models M0 and M1–M5 (mean value with lower and upper bounds, of 95% 
confidence interval, in this case). The lifelines package (version 0.21.5) in Python 
was used for survival analysis.

Chart review, including statistical analysis. We selected all patients from the 
holdout test set with a normal ECG who were incorrectly predicted by the model to 
survive 1 year (that is, the patient died within 1 year despite the model predicting 
that he/she would survive) and matched them by age and sex with patients from 
the holdout set with a normal ECG who were correctly predicted to die in 1 year. 
A comprehensive single physician chart review was performed, with blinding to 
group status, using the available EHR data to define cause of death as cardiac, 
non-cardiac or unknown. Cause of death was designated as cardiac if there was 
sufficient evidence that any of the following disease processes led to mortality: 
heart failure, cardiomyopathy, coronary artery disease, arrhythmias, valvular heart 
disease or pericardial effusion. Cause of death was listed as unknown if there 
was inadequate documentation to determine an exact cause and for cases where 
medical complexity precluded a definite classification.

For deaths occurring in the hospital, notes from the three most recent 
outpatient visits, admission notes and MD progress notes were used to adjudicate 
cause of death. For deaths occurring outside the hospital, notes from the three 
most recent outpatient visits and social work notes were used, if available. If there 
was a hospital admission note available within 30 d of death with no useful data 
afterward, we based the cause of death on the available admission note rather 
than assigning an unknown status. If there were no available records within 60 d 
of the presumed date of death, the case was classified as unknown. Official death 
certificates were also used, if available.

We compared the frequency of cardiac-related mortality between groups by 
Fisher’s exact test.

Cardiologist survey, including statistical analysis. In an effort to identify the 
differential clinical features between true positives and true negatives in ECGs 
interpreted as normal by a physician, we designed a series of surveys for ten 
independent cardiologists. Pairs of ECGs, including one true positive (correctly 

predicted by the model to die within 1 year) and one true negative (correctly 
predicted by the model to survive 1 year), matched for age and sex, were presented 
to each cardiologist, with blinding to the model outcome. The cardiologists were 
aware that each pair contained a true positive and a true negative. They were 
presented with 100 pairs of ECGs and asked to determine which patient died 
within 1 year. In addition to the ECG tracing, they were shown patient age, sex and 
nine computed ECG measurements. Next, they were shown 100 different ECGs 
with survival status labeled. Finally, they were shown the original survey again and 
asked to predict survival status. The cardiologists did not know their performance 
on the initial survey before completing the final survey. We compared the 
performance on the surveys before and after seeing the model results by two-tailed 
paired t test.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All requests for raw and analyzed data and related materials, excluding 
programming code, will be reviewed by our legal department to verify whether 
the request is subject to any intellectual property or confidentiality constraints. 
Requests for patient-related data not included in the paper will not be considered. 
Any data and materials that can be shared will be released via a material transfer 
agreement for non-commercial research purposes.

Code availability
Programming code related to data preprocessing and model specification will be 
made available under GNU General Public License version 3 upon request to the 
corresponding author.
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Extended Data Fig. 1 | Summary of the data used in the study. Summary of data used in the study. Note that ‘15 traces’ means the standard 12 ‘short 
duration’ leads (2.5 seconds of voltage data for each) plus 3 ‘long duration’ leads (10 seconds of voltage data for each). PDF = portable document format. 
CV = cross-validation.
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Extended Data Fig. 2 | Model Architecture. Model architecture used in the study.
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Extended Data Fig. 3 | Model performance as area under precision recall curve. Summary of model performance as area under precision recall curve 
(AUPRC) to predict one-year mortality. (A) The mean AUPRC for the indicated input data, including (i) clinically-acquired ECG measures (9 numerical 
values and 31 diagnostic labels), (ii) ECG voltage-time traces only, (iii) age and sex alone, (iv) ECG measures with age and sex, and (v) ECG voltage-time 
traces with age and sex. Models for (i), (iii) & (iv) used XGBoost and models for (ii) & (v) used a DNN. ‘Normal’ refers to the ECGs in the test set labeled 
as normal by the original interpreting physician at the time of ECG acquisition, ‘abnormal’ refers to any ECGs not identified as normal in the test set and 
‘all’ includes both normal and abnormal ECGs in the test set. (B) The relative performance of the DNN models using single leads as input (sorted by 
increasing performance). The mean AUPRC of the models M1-M5 (derived from 5-fold cross-validation, see text) are shown as the bar heights while 
individual data points for each of the 5 models are shown as a red ‘x’; black dots represent the AUPRC of model M0 (trained on 60% of the data and 
tested on the 40% holdout set). ‘2.5 seconds’ and ‘10 seconds’ refers to the duration of the voltage-time traces used for the model (see text for details).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Model explainability with GRAD-CAM. The guided gradient class activation maps (guided Grad-CAM) overlaid on signal-averaged 
waveforms for three patients (bottom 3 rows) as well as mean signal and activation across patients (top row) for leads V2 and V3. Clinical ECG findings 
for all three patients reported anterior acute myocardial infarction with apparent ST segment elevations. Note that these patients were predicted high 
risk by the model, and all died within a year after this ECG (that is, they were considered ‘true positives’). The overlay of the saliency map from guided 
Grad-CAM highlights the regions deemed salient (darker red regions) by the model towards prediction of high likelihood of mortality in a year, which 
coincided with the ST segment.
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Extended Data Fig. 5 | Cardiologist visual survey. Accuracy for the ten cardiologists to correctly identify the true positive ECG (dead within a year) when 
presented with two ‘normal’ ECGs corresponding to a paired set of a true positive and true negative (n=100) (gray bars). Accuracy is also shown (black 
bars) for the same survey after being shown an independent set of paired ECGs (n=100) with outcomes labeled. All ECG pairs presented were matched 
for age and sex.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Custom code was written in python (version: 3.5.2) to extract and parse the data from the clinical database.

Data analysis Custom code in Python 3.5.2 was used to perform all the experiments and analyses. The packages and versions used for analyses are: 
Keras (version: 2.1.6-tf) with a TensorFlow backend (version: 1.9.0) and lifelines package (version: 0.21.5).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All requests for raw and analyzed data and related materials, excluding programming code, will be reviewed by our legal department to verify whether the request 
is subject to any intellectual property or confidentiality constraints. Requests for patient-related data not included in the paper will not be considered. Any data and 
materials that can be shared will be released via a Material Transfer Agreement for non-commercial research purposes.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was done for the main findings in the paper as the available data was large and was determined to be adequate. 
For a sub-analysis of review with cardiologists, one-sample binomial test power calculation was performed to determine the sample size.

Data exclusions We excluded data with poor tracing, missing information and data from patients less than 18 years of age at the time of study (Extended Data 
Figure 1).

Replication The experiments were performed with 5-fold cross-validation and successfully tested on true hold-out dataset.

Randomization The train and test subsets were generated randomly with similar distribution of outcomes for model training and evaluation. 

Blinding For the cardiologist review of a subset of results, they were blinded to the results and process.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The mean age of the population was 58 years (s.d: 18 years). Population consisted of 47% of males and 27% of the patients had 
normal ECG. (ECG measurement and abnormal ECG pattern distribution in Table 2).

Recruitment This was a retrospective study without consent.

Ethics oversight Geisinger institutional IRB approved this retrospective study with a waiver of consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration N/A this was an analysis of retrospective data performed with a waiver of consent.

Study protocol N/A this was not a trial

Data collection No prospective recruitment was performed for this retrospective study.

Outcomes The outcome studied was 1-year mortality, studied in retrospect, as detailed in the paper.
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