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Features & limitations in randomized controlled trials
The randomized controlled trial (RCT) is the gold standard for evidence in clinical research. RCTs allow an inves-
tigator to test a specific hypothesis by controlling for known confounders via regression analysis and ameliorating
the effect of potential unknown confounders via randomization. Theoretically, RCTs provide unbiased estimates
of a relative treatment effect when conducted with adequate number of subjects [1]. Ideally, each and every medical
intervention would be subjected to rigorous and well-powered RCTs to demonstrate effectiveness before the inter-
ventions are implemented into clinical practice. However, practically, this ideal is unattainable for several reasons,
the most important of which are the immense expense of planning and executing an RCT; difficulty recruiting
patients to participate and challenges in generalizing findings to those that have been excluded from the RCT. In
fact, today, over 30,000 cardiovascular disease (CVD) related clinical trials in clinicaltrials.gov have either not been
completed or have not reported results in peer-reviewed publications because of limited power (i.e., difficulty in re-
cruiting potential candidates), inadequate period of follow-up, heterogeneous study populations with unaccounted
inter-individual variabilities, adverse events that were potentially unrelated to interventions or null publication bias.
These deficiencies often lead to difficulties interpreting trial results or generalizing trial findings to individual pa-
tients at the point of care [2,3]. Furthermore, many RCTs deviate from the ideal analytic strategies because of design
flaws. Importantly, clinical trials often enroll patients who may not be representative of the targeted population in
the first place [4]. RCTs also cannot reveal the distribution of risk in the overall population, nor provide accurate
measures of absolute effectiveness for a treatment when the treatment effects can differ between the clinical trial
and the real world (e.g., medication adherence, observer effects, patient characteristics or drug interactions). For
these reasons, there has been an ongoing search for better experimental approaches.

In this paper, we will discuss the potential for adaptive, artificial intelligence (AI) guided clinical trials to generate
evidence in cardiovascular medicine. AI may allow an investigator to predict results sooner and potentially harming
fewer patients, or to perform AI-assisted randomization strategies using a high-dimensional set of variables.

Beyond complex adaptive clinical trials: from oncology to cardiovascular medicine
Much existing work has focused upon improving conventional clinical trials by making them more flexible and
efficient. These strategies typically involve incorporating findings that occur during the trial to modify or refine the
trial design. For example, the concept of an adaptive trial allows modifications to the trial or statistical procedures
discovered during an interim analysis [5]. Adaptive trials can be classified into several categories based upon
their specific mechanisms: sample size/baseline characteristic/outcome reassessments; treatment arm modification;
hypothesis/design modification based upon interim data and prospective–retrospective or enrichment designs.
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In addition, the statistical concept of adaptive trials is usually not a statistically significant p-value, but interim
data-driven modification with methodologies such as Markov chain Monte Carlo, decision rules or Bayesian
methodologies. To date, adaptive trials (e.g., BATTLE-2 [6], FOCUS4 trial [7], I-SPY trial [8], NCI-MATCH [9],
Lung-MAP SWOG S1400 [10] and DIAN-TU [11]), N-of-1 trials (single-patient trial designs), basket trials and
umbrella trials (which operate on subsets of patients) have been completed or are ongoing. However, the methods
of these innovative trial designs have not yet been widely applied or considered in cardiovascular medicine [12]. With
the increasing utilization of genomic-based diagnosis in the heterogeneous disease of cancer, oncologists have begun
to more widely utilize N-of-1 trials to treat their patients. Oncological clinical trials such as study B2225 using
Imatinib for ten patients (eight with locally advanced dermatofibrosarcoma protuberans and two with metastatic
disease) to assess the activity of imatinib in diseases associated with expression or activation of imatinib-sensitive
tyrosine kinases demonstrated the potential of this approach in rare disease [13]. We believe that similar approaches
may be of value in cardiovascular medicine, such as in the example of a trial of a new heart failure medication, for
in peripartum cardiomyopathy.

Interestingly, CVDs are equally heterogeneous even before consideration of patient genetics results, and arguably
even more heterogeneous when incorporating genetic results or biological features as defined by biomarkers.
However, current cardiovascular treatments still poorly, they incorporate patient stratification and often resort
to the ‘one-size-fits-all’ doctrine. In the case of heart failure, recent ‘phenomapping’ efforts have highlighted the
potential for redefining subtypes of heart failure with preserved ejection fraction to different clusters that may
differentially respond to different treatments [14,15]. Meanwhile, reduced left ventricular ejection fraction (<35–
40%) has been the key inclusion criterion that identified therapeutic responses, yet factors identified in post-hoc
analyses like ventricular sizes, rhythm or conduction patterns or valvular functions may influence the response
rates of intervention that are often not accounted for in patient selection or treatment adjustments. Moreover, to
date most genetic testing in CVD occurs only in specific populations such as those at high risk of sudden death
or possessing suspected inherited CVD. As genome-based cardiovascular medicine becomes more widespread, the
potential for incorporating genetics into cardiovascular trial design will increase dramatically. Finally, we note that
there are methodological challenges for adaptive clinical trials that need to be addressed (Supplementary Table 1).

Types of artificial intelligence: machine learning, deep learning
Briefly, machine learning (ML) can be classified into supervised (i.e., classification) and unsupervised learning
(i.e., cluster analysis) [16,17]. Deep learning (DL) is an especially promising subfield of ML that has developed more
recently with the advent of wide accessibility to highly parallel computing power via computer graphics processing
units. Although ML may be used for classification or to cluster patients by many variables simultaneously, as of
now there exists no evidence or examples to demonstrate that AI is better than traditional statistical methods in
clinical medicine. The concept of biomarker-driven adaptive trials such as BATTLE-2 trial [6] could be categorized
into training, testing and validation phase which are similar to the practices of ML. Therefore, advances in AI such
as DL may ultimately prove beneficial when applied to adaptive trials. Indeed, there are many examples of ML and
DL already in use in medicine [18].

Meanwhile, deep reinforcement learning (DRL), an especially promising but still emerging field of machine
learning which is often used in computer gaming could also be applied to RCT methodologies. DRL could
potentially overcome ethical limitation of current RCT (e.g., different in outcomes between two arms) because
DRL can learn from prior experience by selecting actions and continue to select better actions to improve outcomes.
For example, DRL can help agents (such as a clinical making decision tool) to select more accurate actions to
reduce readmission rate in heart failure patients by analyzing current results to predict the future outcomes, and
continuously refining such algorithms.

Application of AI in cardiovascular clinical trials
The prospect of future trials using AI-guided biomarkers or genomics in advanced adaptive trials may impact
all components of the clinical trial process, including: study design; study recruitment; study conduct and study
intervention and interpretation. Supplementary Table 2 enumerates the potential of AI in different clinical trial
methodologies based on types of clinical trials.
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Study design
Study design in clinical trial is a challenging subject. The ability to modify ongoing trials using interim data in
adaptive designs is promising but more robust statistical analysis without bias is needed to use predictive analytics.
Study design is crucial for clinical trials to determine the accuracy, reliability, power and generalizability. The main
advantage of adaptive trials is to simulate multiple rounds of analyses to make sure the benefits of the design
substantially outweigh the potential risks. Thus, with powerful predictive ability, AI could be used to simulate a
virtual round of data analysis (i.e., tenfold validation or the parametric G formula) [19]. AI will play an important
role in the statistical planning (i.e., the predictive analytics in interim analysis and the final analysis). AI could
potentially be used to operationalize (i.e., through identification of stratified cohorts) or optimize study design
(i.e., multiple biomarkers, multiple treatments and multiple parameter from different modalities). The minimization
of uncertainty when optimizing study design is one possible target for improvement. However, at present we believe
that the main limitation of current clinical trial is generalizability and external validity. Improved methodologies
such as Markov chain Monte Carlo, decision rules, Bayesian analysis strategies or future novel AI techniques may
be useful in study design. AI could help with identifying targeted populations by selecting multiple variables
(i.e., different ethnicity, life style, diet, culture, income, geographical location, number of emergency department
or primary care doctor visits) using sophisticated techniques and ultimately improve the external validity of the
study’s findings. AI could potentially identify drug efficacy, identify adverse reactions or reduce both the time and
the costs compared with more traditional clinical trials. For example, applying methods drawn from AI to wearable
technology has the potential to incorporate real-world variables into protocol designs. Most importantly, AI can
facilitate genome driven basket/umbrella clinical trials to select genes/single nucleotide variants in small population
with rare heterogeneous syndromes to enhance power and statistical methods.

Study recruitment
At present, the highest frequency application of AI in clinical trials is for the recruitment of patients to studies. For
example, there are many commercial applications that already claim to use AI to some extent for effective study
recruitment. However, this is a fertile area and there remain many possibilities offered by AI-recruited trials be
explored. The AI company Deep 6, for example, uses natural language processing to read physicians’ notes, pathology
reports, diagnoses, recommendations and to detect hard-to-find lifestyle data, such as smoking and activity history
to ultimately match patients to clinical trials with appropriate criteria. Mendel.ai, another emerging AI platform,
uses an natural language processing algorithm that interprets unstructured data pulled from clinicaltrials.gov to
match qualified patients with relevant clinical research opportunities, ultimately resulting in a reduction in time
and cost [20]. AI could potentially be used to identify eligible patients using inclusion and exclusion criteria from
electronic health records (EHRs) [21,22] or define inclusion and exclusion criteria based on results of similar trials
in the past. Although commercial applications from IBM such as Watson for clinical trial matching claim the
ability to extract targeted populations for clinical trials [23], studies have shown that there are biases in AI system
including IBM Watson’s predictive algorithm in a substantial number of cases based on predictive analytics [24–27].
This was because the methodologies often times did not incorporate standard evaluation techniques, and thus there
is no way to validate their rigor and/or reproducibility. AI-platforms such as these could potentially be used to
overcome limitations of previous clinical trials. Replication of the SPRINT trial [28], for example, could be used
with AI to recruit candidates, titrate and optimize their BP [19]. For example, a known limitation of SPRINT is that
more than 90% of the trial’s patients were under antihypertensive drug treatment at baseline and this baseline BP
with antihypertensive drug treatment could confound results. Thus, AI can be used to stratify baseline BP using
real-time measurement from wearable technology that may identify latent variables (i.e., medication compliance,
average time of BP) and this method could potentially better stratify groups of patients in the SPRINT trial.

Study conduct
The utilization of AI to ensure rigor and reproducibility of results is promising. AI could potentially facilitate
changing how RCTs are conducted. Concepts such as randomization, double-blinding and control group compar-
isons are the strongest features of RCTs. AI could help to generalize the results. For example, AI can analyze EHR
or biobanks from drugs sensitivity to predict dropout rate ahead-of-time, which could then be incorporated into
aggressive education and intervention in a group of high-risk patient in terms of dropout rate [29]. AI can be used
to perform exploratory analysis from vital signs, healthcare providers’ notes in EHR (i.e., physicians, consulting
services, social worker, physical therapy, and register nurses), biomarkers, omics data (i.e., genomics, transcrip-
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tomics, metabolomics, proteomics, more recently ‘exposomics’) and cardiac imaging, leading to novel data driven
hypotheses, new discovery of phenotypes or pathogenesis of CVDs. In addition, AI may help in terms of direct
observation or supervision during trial conduct. A combination of wearable technology for real-time variables and
cloud-based system to conduct study has a potential to solve current adaptive trials problems. Finally, AI is used in
drug discovery. A large number of commercial startups have already conducted clinical trials using drugs discovered
via AI methods [30].

Study intervention & interpretation
AI-directed clinical trial may perform better than traditional clinical trial because AI often has increased predictive
analytic ability compared with humans. In general, interventions in RCTs are a priori predicted to have beneficial
effect. AI could be used to more rapidly identify negative results in ongoing RCTs. Predictive analytics is key for
AI-guided study intervention before the trial and during interim analysis. Ongoing trials using AI in medicine
such as SYNERGY-AI trial (NCT03452774) are underway. Another potential is to use AI to shorten time of trials
while maximizing benefits. For example, in the COAPT trial [31], AI could potentially predict HF hospitalization
in guideline-directed medical therapy and MitraClip at 12 months rather than 24 months. In addition, AI could
help with process automation (i.e., tailor online surveys, automated inform consent, reduce duplicate data entry,
optimize dose of medication and drop ineffective treatments) [32,33].

Future perspective
Overall, with emerging wearable technology and big data, AI has potential to enable innovative trials a faster
development of new interventions. In particular, the incorporation of wearable device technology may be helpful
in novel designs to study new drugs by capturing unique data such as better monitoring their potential side effects
or tracking real-time medication adherence [34]. AI-guided wearable technology could be used to titrate medication
using real-time vital signs or during interim analysis to more precisely assess real-time medication adherence. The
advent of upcoming trials using secure wearable technology and storing data in shareable cloud systems or block
chain, a huge, public, secure and decentralized datastore, is promising [35]. In addition, AI-guided clinical decision
support using multi-omics approaches to maximize effective treatment group or minimize ineffective treatment
group during interim analysis. Finally, AI-guided clinical trials using multiple imputation, cross validation or
data augmentation techniques could be used to explore unknown pattern of rare disease such as premature
atherosclerosis, spontaneous coronary artery dissection or arrhythmogenic right ventricular cardiomyopathy. To
conclude, we believe that AI could and will improve all aspects of the modern clinical trial by incorporating more
sophisticated modeling using the depth and breadth of data that are beyond traditional statistical methods.

Conclusion
In conclusion, although AI has a potential to revolutionize RCT in several areas, the implementation of AI in
RCT much remains to be explored. The attempt to apply AI in RCTs is promising and could increase the efficacy
of RCTs in cardiovascular medicine. The practical guide using AI-guided clinical trials for future investigators is
needed to be established.

Supplementary data
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