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Machine learning in cardiovascular medicine: 
are we there yet?
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Abstract
Artificial intelligence (AI) broadly refers to analytical 
algorithms that iteratively learn from data, allowing 
computers to find hidden insights without being 
explicitly programmed where to look. These include a 
family of operations encompassing several terms like 
machine learning, cognitive learning, deep learning 
and reinforcement learning-based methods that can 
be used to integrate and interpret complex biomedical 
and healthcare data in scenarios where traditional 
statistical methods may not be able to perform. In 
this review article, we discuss the basics of machine 
learning algorithms and what potential data sources 
exist; evaluate the need for machine learning; and 
examine the potential limitations and challenges of 
implementing machine in the context of cardiovascular 
medicine. The most promising avenues for AI in medicine 
are the development of automated risk prediction 
algorithms which can be used to guide clinical care; use 
of unsupervised learning techniques to more precisely 
phenotype complex disease; and the implementation 
of reinforcement learning algorithms to intelligently 
augment healthcare providers. The utility of a machine 
learning-based predictive model will depend on factors 
including data heterogeneity, data depth, data breadth, 
nature of modelling task, choice of machine learning and 
feature selection algorithms, and orthogonal evidence. 
A critical understanding of the strength and limitations 
of various methods and tasks amenable to machine 
learning is vital. By leveraging the growing corpus of big 
data in medicine, we detail pathways by which machine 
learning may facilitate optimal development of patient-
specific models for improving diagnoses, intervention and 
outcome in cardiovascular medicine.

Introduction
Artificial intelligence  (AI) and machine learning 
are umbrella terms for a set of algorithms, which 
allow computers to uncover patterns and make 
decisions from data. After emerging from a quies-
cent period, the capabilities and potential of AI in 
a variety of tasks from automated ‘digital assistants’ 
to self-driving cars are a ubiquitous component of 
popular culture. However, despite several prom-
ising developments and some progress in oncology, 
cardiovascular medicine has not yet experienced a 
similar AI revolution. Routine care of cardiovas-
cular patients accumulates large amounts of data in 
electronic health records (EHR). The integration of 
significant amount of diverse data is challenging in 
a busy clinical setting, resulting in marked underuti-
lisation of information that could influence clinical 
decisions. Furthermore, much of the research that 
drives biomedical care comes from conventional 

hypothesis-driven research studies that  often 
explore a handful of preselected variables and their 
impact on cardiovascular phenotypes. In contrast, 
AI-based methods can use a multitude of variables 
in a hypothesis-free approach to enable data-driven 
discovery which can identify similarities and differ-
ences in patient phenotypes, standardise clinical 
diagnosis, improve existing therapies, find new 
drug targets, optimise care pathway modelling and 
help us deliver data-driven, high-quality precision 
care at an increased rate.1 2 

AI-based methods are increasingly being applied 
to cardiology to interpret complex data ranging 
from advanced imaging technologies, EHR, 
biobanks, clinical trials, wearables, clinical sensors, 
genomics and other molecular profiling techniques. 
Advances in high-performance computing and the 
increasing accessibility of machine learning algo-
rithms capable of performing complex tasks (eg, 
deep learning and reinforcement learning) have 
heightened clinical interest in applying these tech-
niques in research and clinical care. In this article, 
we summarise the current opportunities and pitfalls 
of the application of machine learning in cardiovas-
cular medicine. There is a growing need for robust, 
scalable workflows and connecting patient commu-
nities, providers, payers and healthcare technology 
industry stakeholders for the seamless adoption of 
machine learning approaches. There is also an immi-
nent need to develop guidelines for data acquisition, 
data sharing, security and privacy protection, and 
standardisation of machine learning towards imple-
mentation of precision medicine. There remain 
significant challenges in the application of machine 
learning to cardiovascular medicine, and improved 
care will only result from enhanced dialogue and 
teamwork between clinicians, biomedical infor-
matics scientists and machine learning experts.

Big data in cardiology
Cardiovascular medicine generates a plethora of 
biomedical, clinical and operational data as part of 
patient care delivery. Often these data are stored in 
diverse data repositories which are not readily util-
isable for cardiovascular research due to challenges 
in automated abstraction and manual curation 
technical competency. Despite these challenges, 
the application of machine learning technologies in 
cardiovascular medicine is not new (figure 1). Scien-
tists have long used computers and early techniques 
drawn from AI to analyse and interpret cardiovas-
cular phenotyping data, for example, automated 
analysis of ECGs and imaging systems.3 However, 
renewed interest in AI is emerging due to the 
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availability of a new generation of modern, scalable computing 
systems and algorithms capable of processing petabytes of data 
in real  time. Furthermore, the high  dimensionality of data 
increases analytical challenges and also simultaneously offers 
rich opportunities for improved discovery.4 A few specific types 
of cardiovascular data sets with immediate needs for exploration 
with machine learning approaches are discussed in detail below.

Imaging and high-density phenotyping data
Cardiac imaging modalities like echocardiography, CT, MRI, 
single-photon emission CT, near-infrared spectroscopy, intravas-
cular ultrasound and optical coherence tomography allow for 
visual assessment of structural changes. Since these structural 
changes are related to underlying disease aetiology and patho-
physiological mechanisms, imaging is obviously widely used in 
cardiovascular medicine.5 Imaging data  sets are complex and 
stored in a variety of  formats (JPEG, MPEG, DICOM, and so 
on) and are of varying dimension and scale (two dimensional, 
three dimensional, four dimensional, and so on), thereby repre-
senting the leading edge of cardiovascular big data. For example, 
in a recent study around 20% of Medicare patients underwent 
echocardiography, accounting for approximately 7.07 million 
echocardiography examinations. Given that a single echocar-
diography examination generates 2 GB data, this means about 
14 petabytes of echocardiography results are collected annu-
ally. Traditional statistical methods cannot efficiently handle 
and learn from such elaborate data sets to develop diagnostic 
and predictive models for assisting clinical decision-making. 
Machine learning, on the other hand, could play an important 
role in  automating cardiovascular imaging workflows through 
faster reading, interpretation and diagnosis.6–9 

High-throughput molecular profiling data
Different omics technologies may be applied to perform deep 
profiling of particular molecular entities (eg, genes -> genomics, 
RNAs -> transcriptomics, proteins -> proteomics). The genetic 
basis of cardiovascular disease (CVD)  is a long-standing and 
fruitful theme in research and discovery. Due to the influx of 
low-cost, affordable genomic testing technologies, genomics in 
particular is emerging in cardiology. For example, polygenic risk 

scores are currently available that can predict and provide 2, 
5 or 10-year forecasts of cardiovascular events like myocardial 
infarction, heart failure and stroke. In addition to the discovery 
of at-risk patients, genomic results can also help customise 
therapy selection (eg, warfarin dosing). Since 2007 and 2010, 
several large genome-wide association studies and phenome-
wide association studies,  respectively, have demonstrated that 
CVD pathophysiology results from the complex interaction of 
many genes, non-coding regions and regulatory proteins.10–12 
Typically, a patient at risk is assessed for a potential cardiovas-
cular event incidence (eg, heart attack, stroke, heart failure, and 
so on) using risk scores. Contrast these scores to more conven-
tional scoring methods such as the Framingham Risk Score 
(FRS), a widely used risk score for predicting 10-year coronary 
heart disease risk based on age, gender and smoking status: 
notably, the FRS lacks any genomic component. However 
growing evidence from multiple studies suggests that incorpo-
rating genetic components and computing personalised genomic 
risk scores could play an important role in CVD risk estima-
tion.13 In addition to genomics, emerging molecular profiling 
technology including transcriptomics, proteomics, epigenomics, 
metabolomics and compiling longitudinal microbiome data 
could provide new insights into the pathophysiology of CVDs 
(see table 1 and figure 2). In the future, such pan-omics data sets 
could be generated from patient samples and become a routine 
part of cardiovascular care. While high-throughput technolo-
gies provide insight into a large number of genes, proteins and 
metabolites pertinent to CVD, the integration and interpreta-
tion of these data often requires a combination of statistical 
and machine learning approaches. For example, using high-
throughput differential gene expression analyses from microar-
rays or RNA sequencing using statistical methods provides a list 
of genes that are altered in the patients but not controls. This 
may provide insight into disease processes, but it is unlikely 
to be directly clinically applicable. Using a machine learning 
framework, a signature-based predictive model could be built 
and used to develop a new biomarker-based diagnostic test. 
Molecular profiling and downstream analyses using statistical 
and machine learning approaches can also aid in identifying new 
target molecules for drug discovery and drug repositioning.5 14 
Emerging studies suggest that combining pan-omics technol-
ogies with imaging will be routine in the future to compile a 
stratified profile of patient population.5 For example, recently, 
Li et al demonstrated that layering genomic data on EHR-based 
phenomics can be used to find and characterise patient subtypes 
(in this case, for type 2 diabetes mellitus).15

Data from clinical trials, population studies and disease registries
Current guidelines developed by various cardiovascular soci-
eties are implicitly based on an ‘average patient’.16 However, 
the complexity of human pathophysiology often cannot be 
adequately modelled by assuming patients conform to the same 
general rubric, and consequently, the guidelines may not be 
applicable for some patients. Machine learning tools can help 
develop standardised predictive models that could aid cardiol-
ogist with patient-specific guidelines. Such approaches can be 
considered a cognitive  extension that augments rather than 
replaces physicians with AI for making patient-specific decisions. 
Importantly, accelerated and automated clinical decision-making 
would help providers to reclaim time and improve patient–
provider interactions.

Figure 1  Projecting the growth of publications in PubMed with 
‘cardiology’ and ‘machine learning’. Data compiled using Medline 
(PubMed) trend (http://dan.corlan.net/medline-trend.html). 
Exponentiated regression of log number of publications on year is used 
to predict the future trend.
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Need for machine learning in cardiovascular medicine
A primary difference between statistical methods and machine 
learning methods is that the former primarily help to understand 
relationships between a limited and a number of variables, but 
the latter contribute to identify and engineer features from the 
data and perform prediction. Machine learning methods thus 
complement and extend existing statistical methods—providing 
tools and algorithms to understand patterns from large, complex 
and heterogeneous data. Although classical statistical methods 
are capable of both discovery and prediction, machine learning 
methods are suitable and generalisable across a variety of data 
types and offer analyses and interpretation across complex vari-
ables.17 Additionally, machine learning techniques typically rely 
on fewer assumptions and provide superior and more robust 
predictions. Several major types of machine learning algorithms 
are described below:

Supervised learning
Supervised learning is a machine learning approach where 
the investigator uses a database of observations with labelled 
outcomes or classes. These data are generally used to develop a 
model to predict or classify future events, or to find which vari-
ables are most relevant to the outcome. Examples of supervised 
learning algorithms include ordinary least squares regression,18 
logistic regression,19 least absolute shrinkage and selection oper-
ator (LASSO) regression,20 ridge regression,21 elastic net regres-
sion,21 linear discriminant analysis,22 Naïve Bayes classifiers,9 
support vector machines,23 Bayesian networks,24 a variety of 
decision trees25  especially Random Forests26 and  AdaBoost or 
gradient boosting classifiers,27 artificial neural networks and 
ensemble methods.7 Some of the examples of supervised machine 
learning tasks include regression, classification, predictive 

modelling and survival analysis. Supervised machine learning 
can help circumvent classification problems in phenotypically 
difficult patients (figure 3). For example, we recently described 
the use of supervised learning for differentiating athlete’s heart 
and hypertrophic cardiomyopathy.7 In another similar example, 
we developed a cognitive machine learning-based classifier to 
distinguish between constrictive pericarditis and restrictive 
cardiomyopathy.8

Unsupervised machine learning
Unsupervised learning is a machine learning approach suitable 
for a data set with no prior label or annotation available. Instead, 
the goal is to learn the relationship between variables and uncover 
hidden structure in a data set. Examples of unsupervised learning 
include clustering methods (hierarchical or K means),28 principal 
component analysis, information maximising component anal-
ysis,29 self-organising maps,30 topological data analysis and deep 
learning. Specifically, deep learning is an emerging subdiscipline 
of machine learning that leverages an artificial neural network 
with many hidden layers of neurons. Deep learning algorithms 
can take a large number of features and derive neural network-
based ‘representations’ that are capable of fast learning across a 
large number of samples.31 Deep learning algorithms are partic-
ularly well suited for computer vision. This enables computers 
to perform reasoning and interpretation of imaging, often using 
convolutional neural network-based representation.32 Currently, 
deep learning architectures are being applied to a variety of 
imaging-based calssifications.33–35 Developing deep learning 
models is computationally expensive, and this field is rapidly 
developing due to the increasing availability of high-perfor-
mance computing infrastructure via cloud computing and graph-
ical processing unit-based model building.31

Table 1  High-dimensional and high-throughput molecular profiling experiments that require statistical and machine learning approaches for 
biological and clinical analyses and inferences

Biomolecular profiling 
technologies Definition Example in cardiovascular medicine PMID

Epigenomics Cataloguing the epigenetic modifications of genome Emerging role of DNA methylation, histone density and post-translational 
modifications in the setting of cardiovascular diseases

25408699

Genomics Assessing all genomic variations in an individual in the setting 
of a disease, response to therapy, characterising rare diseases 
or for molecular subtyping of common diseases

Genome-wide association studies of peripheral artery disease reveal 
ATXN2-SH2B3 locus.

25009551

Glycomics Subtheme of metabolomics that aim to characterise the glycan 
molecules

Regulation of cardiac mitochondrial function using O-linked beta-N-
acetylglucosamine modification (O-GlcNAcylation)

26446791

Immunomics Flow cytometry-based phenotyping of immune and 
inflammation markers

Role of immune cell types including natural killer T (NKT) cells in 
promoting atherosclerosis

28127028

Lipidomics Subtheme of metabolomics that aim to characterise the lipid 
molecules

Molecular lipid species (triacylglycerols, cholesterol esters and 
phosphatidylethanolamines) associated with cardiovascular diseases

24622385

Metabolomics Study of the metabolites (targeted and untargeted) and their 
regulation due to diseases and other perturbations

Metabolite biomarkers improve the predictive value of Framingham Risk 
Score.

28255100

Metagenomics Genomics of the environment Metagenomic analyses using next-generation sequencing revealed 
microbial species in the setting of endocarditis.

24485222

Microbiome Assess the microbial dysbiosis in the gut microbiome in the 
setting of a disease and treatment

Intestinal microbiota and metabolism of L-carnitine accelerates 
atherosclerosis in mouse.

23563705

Phenomics Assessing phenotypes and impact of phenotypes due to 
perturbations at scale; where a phenotyping could be 
contextual (cellular, tissue, whole body or electronically 
derived)

A phenome-wide association study using variants influencing platelet 
traits is associated with myocardial infarction.

24026423

Proteomics Estimating the list of proteins (targeted or untargeted) and 
their differential expression in the setting of a disease, therapy 
or other experimental conditions

Urinary proteome as a biomarker in coronary artery disease 20811296

Transcriptomics Assessing the global gene expression signature in the setting 
of a particular disease or therapeutic intervention

Differential expression analyses of genes in the setting of high-dose 
statin therapy

27989886

PMID refers to the unique identifier number used in PubMed.
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Reinforcement learning
Reinforcement learning is another emerging subdiscipline of 
machine learning based on behavioural psychology. In classical 
machine learning, a model is trained and tested. Future predic-
tions are based on this static model. Variants of this approach 
exist such as real-time machine learning. However, reinforce-
ment learning uses an alternate approach where a software 
agent acts in a prespecified environment to maximise a reward. 
The agent thus discovers the appropriate behaviour using some 
‘reward’ criteria to handle the decision-making function (policy). 
Currently, reinforcement learning is being used for medical 
image analytics,36 disease screening37 and personalised prescrip-
tion selection.38 One particularly exciting example of reinforce-
ment learning was then this method was   used to select the 
optimal sequence of medications in non-small cell lung cancer.39 
Because many problems in clinical medicine can be formatted to 
fit the format of a reinforcement learning problem, we envision 
that this method will be used, for example, to select personalised 
blood pressure drugs and dosages, intelligently segment medical 

imaging data, or to interview patients and extract relevant diag-
nostic information.

Design and evaluation of a machine learning-based classifier
Figure 3 provides a generic outline of the various steps involved 
in the process of building predictive models. Supervised machine 
learning projects begin with formulating a predictive task to 
solve. Data can be aggregated prospectively with clinical trials 
or retrospectively from EHRs, clinical registries and other data-
bases. After finalising the source databases, the data have to be 
checked, filtered and transformed depending on the data types 
and nature of the prediction task. Similar to a clinical trial, inclu-
sion and exclusion criteria can be recommended and samples can 
be filtered out to ensure appropriateness, reproducibility and 
optimal performance. Typically, data sets are split into separate 
training and testing data sets. A predictive model is constructed 
using training data sets, and its performance is then evaluated on 
the held-out test data. Related but more sophisticated techniques 
for evaluating test/training splits such as K-fold or leave-one-out 

Figure 2  An infographic depicting various elements amenable to machine learning in cardiovascular medicine.
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cross-validation can be used. Specific supervised learning perfor-
mance statistics like Cohen’s kappa statistics, Matthew’s correla-
tion coefficient, or F1 score augment traditional statistics like 
true positive rate, false positive rate, positive prediction value, 
negative prediction value, and so on (figure 3). In binary clas-
sification problems, overall model classification performance is 
often evaluated by computing the area under the receiver oper-
ating characteristic  curve. Further refinement of a model can 
be achieved using the technique of feature selection. Feature 
selection consists of identifying the subset of predictor variables 
most relevant to a prediction task and removing the remaining 
features from the model. This helps to avoid overfitting a partic-
ular model to the training data set.

Delivering machine learning algorithms at the point of care
Predeveloped machine learning models can be stored in a 
computer to automatically perform precision phenotyping or 
patient acuity monitoring. The machine learning module may 
exist as standalone software; incorporated into a software suite 
for imaging, echo or other cardiovascular imaging modalities; 
as a cloud computing service provided by service providers such 
as Amazon Web Services, Microsoft Azure, Google Cloud Plat-
form, or in a virtual private server-based system. Machine learn-
ing-based predictive models may also be embedded in EHRs or 
mobile device applications.

Challenges and opportunities 
Need for orthogonal evidence from AI in cardiovascular medicine
Designing predictive and prescriptive models in cardiovascular 
medicine could help enable risk stratification and thus have 
significant implications in quality of healthcare delivery and 
impact on patient outcomes.40 However, machine learning algo-
rithms are not a panacea and also have limitations. One espe-
cially important challenge is the interplay between overfitting 
and underfitting the data  sets. Hence, assessing bias-variance 
trade-off is a key step for predictive model validation. In short, 
the success of a machine learning project depends on the number 
of observations, number of features, selection and parameterisa-
tion of features and algorithm chosen for the model. Most impor-
tantly, an optimal predictive model can only be as good as the 

signal within the input data sets. This limitation can be addressed 
by performing orthogonal validation with independent data or 
different data modality to further validate the machine learn-
ing-based feature selection and predictive analytics.

Generalisability of machine learning models
In a recent, methodologically sound study, Frizzell et al showed 
that machine learning approaches performed poorly compared 
with traditional statistical methods in the context of congestive 
heart failure readmission prediction.41 As the authors themselves 
conclude, results of their large-scale machine learning attempt 
to predict readmissions are largely not concordant with both 
earlier and emerging findings.9 42 Here, we would like to high-
light the conceptual limitations of readmission prediction and 
challenges with modelling approaches presented. First, there 
is a philosophical difference between predictive logistic regres-
sion models and machine learning-based modelling strategies. 
All modelling strategies begin with assumptions, and structural 
limitations and successful modellers must remain cognisant of 
these. Clinical context, local factors (including physician pref-
erences, federal, regional and local care standards), selection 
of medications and other clinical decisions influence the final 
design of the model. Heart failure is a complex, heterogeneous 
disease. Readmission, layered on top of this, adds an enormous 
amount of complexity due to biological, clinical, socioeconomic 
and psychological interactions. One solution to avoid the impact 
of such bias is the generalisation of prediction task and building 
of different predictive models for various regions, cities or even 
individual hospitals. We took such an approach to model read-
mission at our hospital, obtaining a significantly higher C-sta-
tistic (0.78) than those shown by Frizzell et al (AUCs in the 
range of 0.6–0.7). There is no a priori reason to expect that a 
model built with data from, for example, a hospital in New York 
City should be able to predict readmission in Mobile, Alabama. 
Bias due to variation in hospital-to-hospital care pathways is 
not accounted in the model by Frizzell et al; we assume these 
rates would be different across various hospitals in the cohort as 
the authors also did not perform a feature selection or accuracy 
assessment of a reduced representation model.43 It is reasonable 
to assume that the factors driving readmission in the different 

Figure 3  Cardiology informatics workflow used to develop a machine learning-based predictive model discriminates physiological function 
(athlete’s heart) from pathological (hypertrophic cardiomyopathy) function. LV, left ventricular.
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regions are different.43 In general, missing information will be a 
challenge when trying to draw clinical inferences from a data set. 
However, for several reasons, machine learning is often superior 
to traditional statistical methods in the context of missing data. 
First, machine  learning methods tend to make fewer assump-
tions about the underlying data, which means that missing data 
that might challenge the assumptions of statistical models are 
less of an issue. Such approaches are being particularly helpful in 
‘messy’ problems such as EHR-based inference. Second, model-
ling missing data using imputation technique is the most common 
method to deal with missing data. Empirical evidence shows 
that machine learning methods can be used to define, interpret 
and handle missing data as part of the predictive modelling in 
biomedicine than traditional statistical methods.

Causality versus association in machine learning
One notable feature of machine learning algorithms is that 
highly predictive variables are not necessarily causative for the 
outcome of interest. Hence, mere automated inference using 
machine learning would not be an ideal application in the setting 
of cardiovascular medicine; instead, leveraging interpretable 
models and features may help in democratising machine learning 
in cardiovascular medicine. Consider the example of a drug 
which correlates with increased mortality—it may instead be the 
case that the drug is merely a marker for an underlying disease, 
which causes mortality, and not the causative agent itself. A 
classic example that highlights the causality versus association 
in the setting of cardiology is the association of high-density 
lipoprotein (HDL) cholesterol—higher levels—with low  CVD 
risk, but drugs that increase HDL (such as the trapibs) do not 
appear to markedly reduce cardiovascular risk. In this context, 
HDL could be an indirect or surrogate molecular marker at 
least in some of the disease subtypes, which is associated with 
coronary artery disease, but it does not participate in causing or 
alleviating it. To model the causality versus association problem, 
some solutions for causal inference have been developed such 

as Mendelian randomisation (MR) or statistical analysis based 
on directed acyclic graphs. MR is an emerging technique, which 
relies on the fact that genetic material is randomly inherited. 
A particular risk allele (eg, a   single-nucleotide polymorphism 
(SNP) that changes low-density lipoprotein (LDL) cholesterol 
levels) can act as an instrumental variable for the exposure 
studies. As  the prior knowledge suggests the SNP is causally 
affecting LDL levels, and the SNP is randomly inherited, if LDL 
levels are associated with the outcome we can assume a causal 
relationship. MR has been used in a number of cardiovascular 
studies to causally implicate factors like alcohol intake44 and LDL 
cholesterol.45 MR has recently been used to demonstrate that a 
biomarker associated with  CVD (cystatin C) was not causally 
related.46 Teasing such complex causal and association effects is 
crucial to developing personalised therapies in cardiology. New 
methods are now being designed to integrate MR with machine 
learning for systematic and automated causal inference using 
large-scale population and phenomic data sets.47

Standardisation of machine learning using a minimum information 
model in the setting of biomedicine
Summarising evidence from multiple studies and meta-analyses 
are vital for developing guidelines and policy implementations 
in public health and medicine. However, to achieve such concor-
dance using machine learning, a new policy on the dissemination 
and reporting of machine learning models in medicine is required. 
Publications should report minimum sets of data elements: for 
example, all model parameters should be provided, and the 
manuscript should also communicate variables using a standard 
ontology (see table 2). Any data transformations applied to the 
data, sampling methods and random number generator seeds 
should be disclosed. Further, all data, version numbers of soft-
ware and associated code should be released in a public domain 
software archive system to enable replication. Journals and 
researchers could adopt such a minimum information model for 

Table 2  Open access biomedical and healthcare ontologies and big data resources in cardiovascular medicine for developing machine learning 
resources

Resource Description URL

Cardiac Electrophysiology Ontology 
(EP)

Ontology describing electrophysiological experiments in cardiology (232 
terms)

https://bioportal.bioontology.org/ontologies/EP

Cardiovascular Disease Ontology 
(CVDO)

An ontology to describe entities related to cardiovascular diseases https://github.com/OpenLHS/CVDO

Cardiovascular Gene Ontology (CVGO) Cardiovascular disease genes and their annotations (4000 human 
proteins)

http://www.ebi.ac.uk/GOA/CVI

ClinicalTrials.gov Database of public and private clinical trials with 3165 cardiology studies https://clinicaltrials.gov/ct2/results?term=cardiology

Congenital Heart Defects Ontology Ontology describing congenital heart defects data https://bioportal.bioontology.org/ontologies/CHD

database of Genotypes and 
Phenotypes (dbGaP)

Compendium of genome-phenome data sets (155 540 variables, 6935 
analyses, 2892 documents and 1878 data sets in 167 studies)

https://www.ncbi.nlm.nih.gov/gap/?term=cardiovascular

Electrocardiography Ontology (ECG) Ontology describing ECGs, their capture method(s) and their waveforms http://www.cvrgrid.org/

Genome-Wide Association Studies 
(GWAS) Catalog

430 studies, 3214 associations and 252 catalogue traits https://www.ebi.ac.uk/gwas/search?query=cardiovascular

Heart Failure Ontology (HFO) Ontology describing heart failure-relevant information including the 
causes and risk factors, signs and symptoms, diagnostic tests and results, 
and treatment

https://bioportal.bioontology.org/ontologies/HFO

NHLBI GO Exome Sequencing Project 
(ESP)

Genes and variants contributing to heart, lung and blood disorders (6503 
samples)

http://evs.gs.washington.edu/EVS/

Ontology of Cardiovascular Drug 
Adverse Events (OCVDAE)

Ontology of cardiovascular disease drug-associated adverse events (2948 
terms)

https://bioportal.bioontology.org/ontologies/OCVDAE

Phenome-Wide Association Studies 
(PheWAS) Catalog

Catalogue of phenome-wide associations from multiple studies https://phewascatalog.org/
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machine learning and mandate use in the cardiovascular medi-
cine community. Clinician investigators and data scientists need 
to come together for defining data sharing and usage policy. 
Compiling data for various disease phenotypes and therapeutic 
stratifications amenable to machine learning from healthcare 
providers and health systems is crucial to improve the gener-
alisability and predictive provenance of clinical algorithms for 
learning and prediction. Such efforts would help reduce ambi-
guity and promote the adoption of machine learning as a stan-
dard mode of data interpretation in the cardiology community.

Engaging cardiovascular medicine stakeholders in machine learning
Patients regularly pose questions that may be difficult to answer 
without data-driven analytics. For example, ‘Are there many 
patients similar to me treated here?’, ‘What was the direct 
outcome of my treatment?’, ‘Are there any alternative treatment 
options?’, or ‘Are there other medications to reduce my symptom 
burden?’. Providers are keen to improve their overall quality of 
patient care. Payers are interested in providing optimal care to a 
patient with minimal investment, thus ensuring maximum return 
on investment. The pharmaceutical industry is engaged in devel-
opment and delivery of therapies that suit a patient. As healthcare 
is driven by these four related, yet diverse stakeholders, engaging 
them to need an all-encompassing strategy satisfies the multi-
tude of requirements. Thus, tools to identify population-level 
risk and infer the individual risk of a patient are key. We envisage 
that machine learning-based, hyperlocal analytics would allow 
a primary care physician or cardiologist to answer these ques-
tions with clarity. Collectively, engaging patients, providers, 
payers and pharma to leverage modern analytical approaches 
as part of routine clinical care may improve outcomes and 
overall survival. To encourage the use of machine learning-based 
methods, medical students should be trained in the application 
of both statistical and machine learning in medicine and health-
care (table 3). The physician of the future must be both a clini-
cian and a data scientist. Indeed, the ability to apply advanced 
data science concepts to clinical care may ultimately prove to 
be a decisive differentiator between physicians and mid-level 
providers. Initiating machine learning contests and challenging 
students, residents and trainees, as part of major cardiovascular 
conferences, would further improve the adoption of machine 
learning in cardiovascular medicine.48

Limitations of machine learning in cardiovascular medicine
Statistical methods have been applied to biomedical prob-
lems for decades, from old and ubiquitous inventions such as 
survival analysis with Cox’s proportional hazard regression, to 
the design of LASSO regression for the analysis of genotyping 
data. In general, methods like these aim to identify, quantify 
and interpret the relationship between variables. In abstract, 
this is necessarily the same goal as most machine learning and 
AI methods when applied to cardiology. In our view, there is 
not a sharp distinction between statistics and machine learning; 
but instead, the respective sets of methods exist on a continuum 
defined primarily by motivations for their creation and appli-
cation. LASSO, in particular, is often interpreted as a machine 
learning method, although it is an extension of regression tech-
niques. For example, parametric statistical methods assume 
distributions for each variable and then attempt to model the 
probability of a given set of observations. In both supervised 
and unsupervised machine learning, we are often interested 
in solving the same class of problem. Thus, classical statistics 
methods like logistic regression are essentially forms of ‘machine 
learning’. However, machine learning has emerged because in 
many cases more classical methods are either inefficient or less 
accurate in real-world situations. As we discussed in the previous 
example, logistic regression relies on assumptions that are often 
unrealistic, requiring variables to have log odds linearly related 
to an outcome, continuous decision boundaries in classification 
problems, independence of observations and errors, and so on. 
In contrast, many machine learning methods require far fewer 
assumptions of the given data: methods like Random Forests 
have virtually no statistical assumptions of the data; we only aim 
to apply an algorithm and ‘see how it works.’ This approach 
is particularly useful because, in reality, no complex problem is 
linear—Random Forests and more sophisticated AI methods like 
deep learning can learn highly complex relationships from the 
data, which often results in far better performance in prediction, 
clustering and other tasks.

Similar to statistical and mathematical methods, careful design 
and evaluation of machine learning models is an important 
aspect. Various factors including data quality, data integra-
tion strategy, choice of machine learning algorithm, validation 
methods, orthogonal evidence, the clinical and biological rele-
vance of the machine learning model and comparative effective-
ness to the standard of care affect a machine learning model in 
the setting of cardiovascular medicine.2 Choice of methods used 
for data and integrating data from various database systems and 
normalising to a single data model is critical. Assigning appro-
priate case–control labels and validating manual or automated 
abstraction algorithms are also crucial. Without extensive eval-
uation, models are often overfit to training data, and hence 
following a structured machine learning workflow (see figure 4) 
defined and proposed by the cardiovascular medicine commu-
nity is a need of the hour. In this context, we want to emphasise 
the relevance of Dr Box’s quote on statistical models, ‘All models 
are wrong, but some are useful.’49

Conclusions
In this review article, we reviewed the basics of machine learning 
algorithms and what potential data sources exist in medicine; 
examined the need for AI in medicine; and evaluated the poten-
tial limitations and challenges of implementing AI in medicine. 
With the increasing availability of big data sourced from different 
avenues of biomedicine and healthcare delivery and the progres-
sion towards precision medicine approaches, the application of 

Table 3  Differentiating data-driven, machine learning approaches 
compared with statistical approaches

Modalities Medicine Data-driven medicine

Analytical methods Statistical methods Machine learning or deep learning

Analytics strategy Hypothesis driven Data driven

Data complexity Low dimensional High dimensional

Data model Stable data model Evolving, flat data model

Data size Megabytes or gigabytes Terabytes, petabytes, exabytes

Data source Centralised Decentralised

Data source Structured Structured, semistructured or 
unstructured

Data storage Excel or MySQL MySQL, NoSQL or Graph 
databases

Data types Traditional data types Evolving data types

Example method Student’s t-test Random Forests

Example software Excel or SAS R, Python

Sample size Cohort size (~10 K) Large cohort size (>100 K)
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AI for analyses and interpretation of medical data will continue 
to grow. CVDs represent groups of diseases that can benefit 
greatly from pre-emptive prediction, prevention and proactive 
management, and thus AI methodologies. Various types of AI 
algorithms will be essential for understanding the nuanced indi-
vidual risk factors, behavioural drivers and therapeutic pathways 
predictive of disease outcomes in specific patient cohorts and 
also for instituting early therapeutic interventions. The applica-
tion of machine learning algorithms in prospective clinical trials 
would allow comparison with current standard of care practices 
with a goal of implementing precision diagnostics, risk stratifi-
cation and personalised therapeutics. Various machine learning 
methods like supervised learning, cognitive learning and unsu-
pervised learning methods including deep learning could uncover 
hidden structure in big data in cardiology and can help subtype 
chronic complex diseases common in cardiovascular medicine; 
such insights may also lead to novel therapeutic discoveries and 
help improve delivery of personalised cardiovascular care. While 
there exist compelling debates in medicine about whether AI 
will replace doctors in the near future, we believe it will instead 
primarily augment and extend the current practice of health-
care delivery, thus improving the lives of patients, providers and 
society at large.
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