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Accurate and robust cohort definition is critical to biomedical discovery using Electronic 
Health Records (EHR). Similar to prospective study designs, high quality EHR-based 
research requires rigorous selection criteria to designate case/control status particular to 
each disease. Electronic phenotyping algorithms, which are manually built and validated 
per disease, have been successful in filling this need. However, these approaches are time-
consuming, leading to only a relatively small amount of algorithms for diseases developed. 
Methodologies that automatically learn features from EHRs have been used for cohort 
selection as well. To date, however, there has been no systematic analysis of how these 
methods perform against current gold standards. Accordingly, this paper compares the 
performance of a state-of-the-art automated feature learning method to extracting research-
grade cohorts for five diseases against their established electronic phenotyping algorithms. 
In particular, we use word2vec to create unsupervised embeddings of the phenotype space 
within an EHR system. Using medical concepts as a query, we then rank patients by their 
proximity in the embedding space and automatically extract putative disease cohorts via a 
distance threshold. Experimental evaluation shows promising results with average F-score 
of 0.57 and AUC-ROC of 0.98. However, we noticed that results varied considerably 
between diseases, thus necessitating further investigation and/or phenotype-specific 
refinement of the approach before being readily deployed across all diseases.  

Keywords: Electronic Health Records, Automated cohort selection, Electronic phenotyping 
algorithms, Vector-based representations, Word embedding, Feature learning 

1. Introduction

Clinical data collected from patient hospital visits are archived in electronic health records (EHR) 
as part of the healthcare process. These data consist of disease diagnoses, medication 
prescriptions, procedures performed, among others. EHR-based research enables countless 
opportunities for biomedical research [1-3] and precision medicine [4]. However, one of the 
cornerstones of EHR research is the requirement to reliably detect patients with a particular 
disease or phenotype for use in observational cohort studies. Accurately identifying patients with a 
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disease of interest in an EHR system, however, is not trivial due to input errors, coding biases, 
medical reporting biases, data availability, sparsity, and limitations of how the data is structured. 
Defining case/control disease cohorts through presence of a single clinical concept, such as an 
International Statistical Classification of Diseases and Related Health Problems (ICD) code, is 
often not sufficient to produce reliable distinctions. Furthermore, these concepts vary greatly in 
their performance for identifying different diseases [5]. For example, relevant medication 
prescriptions may phenotype patients in some disease with high precision, but not help 
classification in another. 

Advanced EHR phenotyping of diseases is best understood as an “expert system,” where 
researchers with advanced knowledge of a particular disease phenotype design a list of criteria 
which may be used to identify affected (i.e. cases) and sometimes assuredly non-affected (i.e. 
controls) individuals by excluding those with ambiguous clinical status or lack of enough data [6]. 
This typically takes the form of intricate rule-based algorithms specifying the presence and/or 
absence of particular billing codes, pre-defined ranges for laboratory tests, the prescription of 
characteristic medications, processing of clinical notes, among others. These types of rule-based 
algorithms, called “electronic phenotyping algorithms” when working with EHR data, perform 
markedly better than simpler alternatives [7]. The Electronic Medical Records and Genomics 
(eMERGE) [8] consortium has led the effort in defining, implementing, and validating such 
algorithms for a number of diseases. The Phenotype KnowledgeBase (PheKB) [9] repository 
contains such algorithms from eMERGE as well as from other sources. While this approach is 
effective, there are also two main drawbacks. First, implementing each algorithm in a new dataset 
(for example, a researcher wanting to use a previously published algorithm on a different set of 
EHR records) is a time-intensive and sometimes demanding task. This may require dealing with a 
variety of data formats, getting access to specific laboratory or imaging test results, implementing 
natural language processing pipelines, and so on. Second, biomedicine deals with an enormous 
amount and variety of disease – establishing criteria for each new disease is an onerous process 
and does not scale well. In fact, a systematic analysis of commonalities in selection criteria for 24 
eMERGE algorithms found that each algorithm had variable amounts and types of design patterns 
[10]. Due to these restrictions, relatively few algorithms have been created. Currently, there are 
only 42 public phenotypes in PheKB, which altogether represent only a small fraction of human 
disease. As such, methodologies to expedite the design and implementation of phenotyping 
algorithms, or better yet avoid the process overall, would be tremendously beneficial and could 
lead to better/more research of this kind. 

There are many well-established methodologies to automatically learn representations of 
data [11]. For instance, learning low-dimensional representations, such as word embeddings, is a 
common practice to transform high-dimensional data [12]. The use of word embeddings has been 
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proven to be particularly effective in NLP-related tasks, such as language modeling and 
information extraction [13]. Several models have been proposed for learning distribution 
representations of words, the most popular of which being the skip-gram model implemented in 
the word2vec framework [14]. The success of neural networks for computing word embeddings 
has motivated adaptation of these algorithms for other types of data, such as clinical data. In fact, 
there have been several studies that automatically learned embeddings in biomedical informatics. 
Choi et al. [15] learned and compared low-dimensional representations of medical concepts from 
medical journals (abstracted UMLS concepts from around 350,000 medical paper abstracts), 
medical claims (structured clinical data from an insurance company), and clinical narratives (notes 
from publicly available EHR data). They found that the embeddings from these different sources 
produced high-quality results but differed significantly based on data modality. Of particular 
relevance to the current study, Halpern and Horng et al. [16] used the anchor-and-learn framework 
to build phenotype libraries of features using emergency department EHR data. Specifically, this 
method identifies features as anchors for diseases that have both high positive predictive value as 
well as conditional independence from any other feature that could improve prediction. They built 
42 phenotype definitions using this method, evaluating eight of them using physician responses to 
gauge performance. Rotmensch et al. [17] used three probabilistic models to automatically extract 
concepts and create a health knowledge graph of disease-symptom relationships from EHR data of 
approximately 275,000 patients. The resulting learned graphs compared encouragingly against a 
physician-constructed knowledge set.  

Many other efforts to automatically extract phenotypes from EHRs have performed well. 
Miotto et al. [18] built Deep Patient, a three-layered stack of denoising autoencoders used to 
predict risk for future health states (i.e. disease risk) within EHR. Kandula et al. [19] developed an 
algorithm built through bootstrapping that iteratively selects data types to incorporate and tested 
their method for diabetes mellitus and hyperlipidemia cohort identification. Yu et al. [20] used 
NLP of clinical notes and machine learning to identify rheumatoid arthritis and coronary artery 
disease patients. Pivovarov et al. [21] developed UPhenome, an unsupervised, probabilistic 
graphical model to learn computational models of diseases. Chiu and Hripcsak [22] developed a 
three-tier, stacked architecture for ensemble learning and feature representations to define disease 
cohorts. While innovative and successful for their goals, these works have yet to benchmark their 
models against gold standard phenotyping algorithms to appropriately assess their utility for these 
types of studies. In fact, performances of these models were mainly evaluated using manual expert 
review of charts for a small subset of patients or from typical machine learning approaches (i.e. 
training and test).  As such, there is still a gap to evaluate how these automated methods fare 
against established algorithms. Agarwal et al. [23] learned phenotype models of Type 2 Diabetes 
and Myocardial Infarction using a semi-automatic (“silver standard”) procedure through the 

Pacific Symposium on Biocomputing 2018

147

 B
io

co
m

pu
tin

g 
20

18
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

O
U

N
T

 S
IN

A
I 

SC
H

O
O

L
 O

F 
M

E
D

IC
IN

E
 L

E
V

Y
 L

IB
R

A
R

Y
 o

n 
09

/0
5/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



 
 
manual selection of relevant terms. Their models compared favorably against electronic 
phenotyping algorithms, demonstrating the feasibility of these methods for research purposes. As 
they mention, however, this methodology was measured against only two diseases and not fully 
automatic. 

To the best of our knowledge, there is no systematic evaluation of how fully automated 
disease-cohort characterization from EHR compares against research-grade, rule-based 
methodologies. In the current study, we build upon these previous works and compare 
performance of automatically derived patient cohorts using word embeddings for five diseases 
against established PheKB electronic phenotyping algorithms. In particular, we use the EHRs of 
over a million patients to learn embeddings of the medical concepts in the structured records, and 
use these embeddings to summarize the clinical history of the patients. For each disease of 
interest, we then select only a single meaningful clinical concept to use as query, and we rank 
patients based on the distance from the corresponding embedding of the query. From here, 
putative cohorts are systematically generated for the disease concept based on patient embeddings 
with highest similarity, and compared against the gold standards. From these comparisons, we 
have the unique opportunity to learn strengths and limitations of this embedding methodology on 
EHR data by comparing performance across diseases of different types that contain various data 
modalities and rule-based algorithms. Ultimately we hope to generate automated disease 
representations suitable for research studies. 

2.   Methods and Materials 

We present an overall workflow of the study and methodologies in Figure 1. 

2.1.   Research Cohort and Resource 

We utilized clinical data from the EHRs of the Mount Sinai Hospital (MSH). MSH is an urban, 
tertiary care hospital located in on the Upper East Side of Manhattan in New York City. Clinical 
data within the EHRs includes disease diagnoses, lab test results, vital signs, medication 
prescriptions, and procedures among others. For the current study, we restricted our research 
cohort to individuals with at least one recorded clinical feature, leaving 1,304,192 unique patients 
for subsequent analyses. Due to HIPAA requirements, the ages of patients within the research 
cohort are right censored at age 90. The mean age of the cohort is 45.24 ± 22.71 (std). The self-
reported sex breakdown of the cohort is 56.7% female, 43.3% male, and 0.02% not available. The 
self-reported race breakdown of the cohort is: 36.9% Caucasian (White), 14.2% African American 
(Black), 8.88% Hispanic/Latino, 3.99% Asian, 3.1% Other, and 35.7% not available.  
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2.2.   Disease Phenotyping Algorithms 

For gold standard disease cohort selection, we utilized electronic phenotyping algorithms from 
PheKB. We selected diseases by first restricting algorithms to those that are public and are of the 
type “Disease or Syndrome” and then to disease only (e.g. dementia, but not peanut allergy). We 
did not consider algorithms that 
require Natural Language 
Processing (NLP) of clinical 
notes as part of the selection 
criteria. After filtering, we 
selected five of the remaining 
seven algorithms: Attention 
Deficit Hyperactivity Disorder 
(ADHD) [24], Dementia [25], 
Herpes Zoster [26], Sickle Cell 
disease (Sickle Cell) [27, 28], and 
Type 2 Diabetes (T2D) [29]. 
While some of these algorithms 
include control inclusion criteria, 
we attempted only case selection.  

2.2.1.   Electronic Phenotype 
Algorithm Implementation 

For all algorithms, the data types 
included are ICD-9 for disease 

diagnoses; Current Procedural 
Terminology (CPT) and CPT-
Healthcare Common Procedure 
Coding System (HCPCS) codes for procedures; Logical Observation Identifiers Names and Codes 
(LOINC) codes and descriptions for lab tests and vital signs. Unless explicitly specified otherwise, 
we used wildcard characters at the end of all non-five digit ICD-9 codes (e.g. 314.xx). 
Medications terms can include dosage and route of administration in addition to the drug name 
(e.g. CLONAZEPAM 0.5 MG TAB), and as such, we obtained records by querying each term 
surrounded with wildcard characters (e.g. “%Melipramine%”). We were able to successfully 
implement all algorithms with only a few minor modifications as necessary, which we describe in 
this section. As we do not perform association testing using the disease cohorts in the current 
study, we did not implement covariate-related procedures, specifically antiviral medication 
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Figure 1: Workflow design of the current study. A) Framework for 
comparing gold standard PheKB algorithms to our automated method. 

B) Embeddings procedure. C) Retrieval and disease cohort identification 
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minimum dosage threshold, in our application of the Herpes Zoster algorithm. In the T2D 
algorithm, for the glucose lab test results, we were not able to distinguish “fasting” from “non-
fasting” measurements, and as such, considered all records as “non-fasting”. We retrieved diabetes 
medical supplies information using the same search approach as for medication data, necessitated 
by the fact that the authors of the algorithm utilize RxNorm codes, which we did not have 
mappings for. For “Blood-glucose meters and sensors”, we queried: 1. “glucometer” and 2. 
“%glucose%” [AND] (“%meter% [OR] “%monitor%” [OR] “%sensor%”), producing 6,104 
records and 47 distinct terms. For “Insulin syringes”, we queried “%insulin%” [AND] 
(“%syringe%” [OR] “%inject%” [OR] “%pen%” [OR] “%innolet%” [OR] “%flextouch%” [OR] 
“%solostar%” [OR] “%cart%”), resulting in 117,469 records and 356 unique items. 

2.3.   Phenotype and Patient Embedding 

We learn a set of low-dimensional representations (i.e., “embeddings”) of medical concepts from 
the structured EHR. These representations put all ICD-9 diagnosis and procedure codes, laboratory 
codes, and drug codes in a common metric space where similarity is inversely proportional to 
pairwise distance. Next, we use these embeddings to summarize the patient history by weighted 
average of the medical concepts over time windows. For each disease of interest, we then use a 
query consisting of a representative medical concept (e.g. ICD-9 code) as a seed and then expand 
it to other related concepts. Lastly, we use these representations to identify patients with each 
disease by measuring the distance of each patient from the query. 

2.3.1.   Data pre-processing 

In order to systematically create embeddings, the various data types within the EHR have to be 
pre-processed. In particular, we normalized all ICD-9 codes to four digits resulting in 6,272 terms. 
We normalized medication data using Open Biomedical Annotator [30] yielding 4,022 terms. We 
normalized vital signs and encounter descriptions (e.g. “Outpatient”) into seven and 10 terms 
respectively. Procedures and lab tests were normalized based upon sub-string prefixes and 
similarity, which generated 2,414 and 1,883 terms respectively. In total, we derived 14,608 
distinct clinical concepts to be used in embedding procedures. 

2.3.2.   Learning Embeddings of Medical Concepts 

We take inspiration from Choi et al. [15] and use the skip-gram algorithms to learn embeddings of 
the medical concepts reported in the EHRs. For each patient, we organize the normalized clinical 
concepts into an irregularly-sampled temporal sequence, where concepts adjacent to each other in 
the sequence should cluster together in the learned metric space. To this end, we first partitioned 
the patient data in consecutive time intervals composed by fifteen days (Figure 1B). Second, we 
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removed duplicates from each time interval and third, we random-shuffled the concepts in each 
interval. Each time interval represented as a sequence of unique medical concepts was then 
considered as a “sentence” to be given to the word2vec algorithm, which was trained using 
stochastic gradient descent and used as dynamic context the number of concepts in each sentence. 
At the end, every medical concept was represented as a 200-dimensional embedded vector, with 
all the medical concepts mapped in the same metric space. Figure 2 shows a visualization of the 
embeddings learned from the medical concepts in the EMR, going from the raw low-dimensional 
data (A) to seeding with the ADHD concept (B) and clustering using t-SNE (C, D). 
 

A

ment

B D

C

Figure 2: Disease embedding for ADHD with the top 50 closest neighboring concepts from A) 
the raw low-dimensional space, B) to query C), to clustering (D is zoomed in section). 
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2.3.3.   Deriving Patient Representations from Medical Concept Embeddings 

For every time interval considered in the patient clinical history, we used the simple sentence 
aggregation method proposed by Arora et al. [31]. In particular, we computed the weighted 
average of the medical concept embeddings and subtracted the projections of the average vectors 
on their first principal component. This facilitates the removal of the largely shared components 
from the vectors, leading to more discriminative aggregated embeddings. The weight of a 
phenotype w was computed as: w = a / (a + p(w)) with a being a parameter and p(w) being the 
(estimated) phenotype frequency across the whole dataset. At the end of this process, every patient 
was characterized by a bag of clinical status embeddings, lying in the same space of the medical 
concepts, which are used for performing the automated phenotyping.  

2.3.4.   Automatic Disease Phenotyping from the Embeddings   

For the diseases of interest, we used the following representative concepts as seed queries: ICD-9 
code 314.0x for ADHD; ICD-9 code 290.xx for Dementia; ICD-9 code 053.xx for Herpes Zoster; 
ICD-9 code 282.6x for Sickle Cell; and ICD-9 code 250.xx for T2D. For each disease query, we 
sought to capture related concepts through query expansion (Figure 1C). Here, we added the top 
five closest ICD-9 codes, medications, and procedures to the original seed query. We used cosine 
distance to measure the relationship between each patient and query vectors, using the closest 
patient vector (i.e. sentence) as a summarized score. We then repeat this process for each vector in 
the expanded query pool and retained the average of all the distances as a final value. For sake of 
comparison, we derived disease cohorts using ICD-9 presence only, embeddings only, and 
embeddings with the query expansion. 

2.4.   Evaluation Design 

For every disease considered, we evaluate the embeddings for annotation and retrieval and report 
the precision, recall, and F-score. In the annotation task, we assigned a positive label to each 
patient for the disease if the distance from the query was below a certain threshold. To facilitate 
the definition of the threshold, we mapped the distances to probabilities (ranging from 0 to 1). 
Precision is the number of correct positive results divided by the number of all positive results, 
recall is the number of correct positive results divided by the number of all true positive results, 
and F-score is the harmonic mean of them both. We set the threshold to 0.7, with this value 
optimizing the tradeoff between precision and recall for all diseases examined. In the retrieval task 
we sorted the patients by their distance from the query and evaluated the ranking lists obtained. As 
metrics, we report Precision-at-10 (Prec@10) and R-precision (Prec@R). Specfically, Prec@10 
measures the ratio of relevant patients (i.e., patients with the disease in the ground truth) within the 
top 10 positions of the ranked embedding output list (i.e., top 10 closest patients to the query) for 
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each disease. Prec@R is the precision-at-R of the query disease, where R is the number of patients 
with that disease in the ground truth. 

3.   Results 

3.1.   Evaluating Performance of Embeddings 

We ran the electronic phenotyping algorithms mentioned above to obtain gold standard patient 
cohorts for each disease of interest. The patient count for each cohort is as follows: 7,487 
individuals for ADHD, 10,782 for Dementia, 1,618 for Herpes Zoster, 943 for Sickle Cell, and 
56,687 for T2D.  

3.1.1.   Phenotype Embedding Methodologies  

The first goal of evaluating phenotype embeddings was to assess overall performance across three 
different models: ICD-9 only, (Phenotype) Embedding Only, and (Phenotype) Embedding with 
Query Expansion. We present the evaluation metrics of each model in Table 1. For “Annotation”, 
the ICD-9 Only method interestingly achieved highest precision (0.609) but lowest Recall and F-
Score, implications of which we address in the Discussion. The Embedding with Query Expansion 
performed best in terms of Recall (0.795) and, more importantly, F-Score (0.569), which 
combines the other metrics. The Embedding Only method outperformed the ICD-9 Only method 
in the same metrics, but to a lower degree. The Query Expansion improved upon Embeddings in 
all metrics but most notably in Recall (0.795 vs. 0.489). For “Retrieval”, Embedding with Query 
Expansion outperformed Embedding Only and ICD-9 Only in all metrics, enhancing our 
confidence in using this method. 

 

Table 1: Annotation and retrieval performance for each method. All metrics are upper bounded by 1. 

  

3.1.2.   Phenotype Embedding with Query Expansion at the Disease Level  

We present the evaluation metrics using the Phenotype Embedding with Query Expansion method 
for all five diseases of interest in Table 2. For “Annotation”, it is clear that this embedding 
procedure exhibits variable performance depending on disease. ADHD, Sickle Cell, and T2D 
performed relatively well with F-scores of 0.74, 0.72, and 0.67. The Dementia query performed 

 Annotation  
 

Retrieval 

Algorithms Precision Recall F-Score  Prec@10 Prec@R AUC-ROC 

ICD-9 Only 0.61 0.18 0.27  0.60 0.19 0.59 

Embedding Only 0.44 0.49 0.44  0.62 0.48 0.96 
Embedding with Query 

Expansion 0.50 0.80 0.57  0.66 0.56 0.98 
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the poorest with an F-score of 0.28, primarily due to low Recall (0.20). These trends mostly 
carried over for “Retrieval” assessment.  
 

Table 2: Annotation and retrieval performance for each disease using the Embedding with Query Expansion Method. 
All metrics are upper-bounded by 1. 

 Annotation  Retrieval 
Diseases Precision Recall F-Score  Prec@10 Prec@R AUC-ROC 

ADHD 0.59 0.98 0.74  1.00 0.51 0.96 
Dementia 0.53 0.20 0.28  1.00 0.53 0.96 

Herpes Zoster 0.30 0.93 0.45  0.20 0.36 0.99 
Sickle Cell 0.60 0.91 0.72  1.00 0.73 1.00 

Type 2 Diabetes 0.50 0.97 0.67  0.30 0.54 0.97 

 
To illustrate the utility of the query expansion, we present the concepts adopted for the embedding 
of Herpes Zoster in Table 3. 
 

 

Modality Feature Similarity 

ICD-9 

Herpes zoster w/out complication (053.9) 0.788 
Herpes zoster w/ other nervous system complications (053.19) 0.724 

Herpes zoster w/ ophthalmic complications (053.29) 0.599 
Herpes zoster w/ other specified complications (053.7) 0.568 

Genital herpes (054.1) 0.538 

Medication 

Valacyclovir 0.607 
Famciclovir 0.587 

Valacyclovir hydrochloride 0.522 
Capsaicin 0.515 
Valtrex 0.506 

Procedure 

Varicella zoster 0.503 
Hiv-1 viral load 0.439 

T helper 0.431 
Tsh w/ free t4 reflex 0.410 
Virus identification 0.385 

4.   Discussion 

For the first time, we assessed how disease cohorts automatically generated from an EHR system 
compare to research grade gold standard electronic phenotyping algorithms from PheKB for five 
diseases: ADHD, Dementia, Herpes Zoster, Sickle Cell, and T2D. As an automated method, this 
approach is purely data driven and requires no manual effort beyond selection of a single seed 

Table 3: Features incorporated in the Herpes Zoster model in the expanded query for each modality. 
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concept. Specifically, we employed the word2vec algorithm to create medical concept embeddings 
of the phenotype space. For each disease of interest, we query the embeddings using a 
representative seed concept, which is automatically expanded to include highly related concepts 
nearby in the low-dimensional space.  Overall, both embedding methods (i.e. with and without 
expansion) outperformed using ICD-9 codes alone; precision, however, was higher than the other 
methods but is most likely due to fact that the manual phenotyping algorithms themselves 
incorporate the code. Further, the much lower recall and poorer Retrieval outcomes indicate that 
using ICD codes likely miss many cases. Querying with expansion improved all metrics over 
using the raw embeddings alone, which is one of the strongest aspects of this work. While the 
performance at the disease level varied, the overall evaluation metrics are encouraging, especially 
instances like Sickle Cell, which performed the best. 

4.1.   Limitations and Future Directions 

Many factors likely affected the performance comparison between our automated phenotyping 
method and the PheKB algorithms. For instance, many of the PheKB algorithms incorporate 
selection criteria based on amount and/or temporal length of data in a patient’s record, which was 
not considered in the current iteration of our method. These scenarios might lead to mismatched 
labels due to non-phenotype related properties. Another important drawback is our seeding of the 
queries with ICD codes. Although we overcome many of the limitations of using ICD codes alone 
to electronically phenotype (i.e., low recall), it is difficult to learn across the branches of the ICD 
structure: for instance, it may be desirable to delineate between related phenotypes at the same 
hierarchical level (e.g. type 1 vs. type 2 diabetes mellitus) but since these are both branches of the 
major diabetes ICD code used as a seed for Type 2 Diabetes, our algorithm was not able to easily 
distinguish between them and lead to subpar performance. While the expanded query still 
performed moderately well, this caveat exemplifies that room for improvement exists. 
Specifically, the seed and query expansion might perform better as a learned subgraph of related 
concepts, such as the anchor and learn framework utilized by Halpern and Horng et al. 
Additionally, one of the largest limitations of the current study is that of weak labels: we could not 
evaluate performance of the embeddings separately and in addition to the electronic phenotyping 
algorithms via access to patient charts. We expect even the gold standard phenotyping algorithms 
to erroneously include and exclude patients. Compared to the true phenotype, we could potentially 
be identifying patients that are captured in the automated method but not in the phenotyping 
algorithms. In future work, we will also obtain clinical notes to expand our comparison to all 
disease-related algorithms in PheKB. 
 There are many extensions we wish to pursue that can address current limitations as well 
as strengthen performance. We hope to enhance performance through advancing the patient 
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embedding representation, testing other methodologies such as GloVE [32], as well as developing 
superior ways to summarize clinical history that keeps into account timeline. To bypass the need 
for data pre-processing and harmonization, we plan to standardize our raw EHR data to OMOP 
Common Data Model, from the Observational Health Data Sciences and Informatics (OHDSI). 
Further, the OHDSI framework would enable cross-validation experiments within other 
coordinated hospital EHR systems. 
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