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Reduction of preventable hospital readmissions that result from chronic or acute conditions like stroke, heart failure, 
myocardial infarction and pneumonia remains a significant challenge for improving the outcomes and decreasing the 
cost of healthcare delivery in the United States. Patient readmission rates are relatively high for conditions like heart 
failure (HF) despite the implementation of high-quality healthcare delivery operation guidelines created by regulatory 
authorities. Multiple predictive models are currently available to evaluate potential 30-day readmission rates of 
patients. Most of these models are hypothesis driven and repetitively assess the predictive abilities of the same set of 
biomarkers as predictive features. In this manuscript, we discuss our attempt to develop a data-driven, electronic-
medical record-wide (EMR-wide) feature selection approach and subsequent machine learning to predict readmission 
probabilities. We have assessed a large repertoire of variables from electronic medical records of heart failure patients 
in a single center. The cohort included 1,068 patients with 178 patients were readmitted within a 30-day interval 
(16.66% readmission rate). A total of 4,205 variables were extracted from EMR including diagnosis codes (n=1,763), 
medications (n=1,028), laboratory measurements (n=846), surgical procedures (n=564) and vital signs (n=4). We 
designed a multistep modeling strategy using the Naïve Bayes algorithm. In the first step, we created individual 
models to classify the cases (readmitted) and controls (non-readmitted). In the second step, features contributing to 
predictive risk from independent models were combined into a composite model using a correlation-based feature 
selection (CFS) method. All models were trained and tested using a 5-fold cross-validation method, with 70% of the 
cohort used for training and the remaining 30% for testing. Compared to existing predictive models for HF 
readmission rates (AUCs in the range of 0.6-0.7), results from our EMR-wide predictive model (AUC=0.78; 
Accuracy=83.19%) and phenome-wide feature selection strategies are encouraging and reveal the utility of such data-
driven machine learning. Fine tuning of the model, replication using multi-center cohorts and prospective clinical trial 
to evaluate the clinical utility would help the adoption of the model as a clinical decision system for evaluating 
readmission status. 
 
1.  Introduction 

1.1.  Hospital readmission rates – a bottleneck in delivering high value-high volume 
precision healthcare  

Precision healthcare aims to ensure every patient receive optimal care throughout the onset, 
maintenance or recovery phases of a disease. Close coordination between different players in the 
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health system is required to integrate and deliver high-quality care. Patients, providers and the care 
management team play a pivotal role in delivering low-cost, high value and high volume care for 
patients with diverse healthcare requirements. Improving the quality of healthcare delivery is a 
challenging task for providers and an important priority for regulatory agencies. As an attempt to 
reduce healthcare cost, lower healthcare disparities and increase overall quality of care, healthcare 
regulatory agencies including Centers for Medicaid and Medicare Services (CMS, 
https://www.cms.gov/) have proposed the Hospital Readmission Reduction Program (HRRP; See: 
https://www.cms.gov/medicare/medicare-fee-for-service-payment/acuteinpatientpps/readmissions-
reduction-program.html). Depending on the performance of a given provider (or hospital) with 
respect to the regional, state and federal performance rankings, penalties are levied on healthcare 
providers. In response, in order to reduce readmissions providers have used commercial or in-
house readmission assessment tools to predict 30-day readmission rates, but the overall 
readmission rates still remain high in various provider sites. In 2015, 2,592 U. S hospitals out of 
5,627 registered hospitals in the country received penalties from the CMS 
(http://khn.org/news/half-of-nations-hospitals-fail-again-to-escape-medicares-readmission-
penalties/) for not effectively tackling readmission rates. Despite decades of research, 
interventions, operational improvements and systems engineering methods, readmission remains a 
major challenge for patients, providers and payers alike.   

1.2.  Readmission rate assessment directive by CMS  

The CMS (https://www.medicare.gov/hospitalcompare/Data/30-day-measures.html) directive on 
unplanned readmission grades the results of five diseases, two surgical procedures and a 
quantitative estimate of hospital-wide readmission rates. The conditions that CMS evaluates for 
readmission rates include three specific cardiovascular diseases (heart attack, heart failure, and 
stroke), one respiratory disease (chronic obstructive pulmonary disease) and an infectious disease 
(pneumonia). The hospital-wide readmission rates assess the readmission status of patients 
admitted to internal medicine, surgery/gynecology, pulmonary, cardiovascular, and neurology 
services. Further, the 30-day mortality measures determine death rates associated these services. 
Implementing data-driven methods that consider all available clinical variables in a hypothesis-
free approach could identify new features driving clinical outcomes. Such an approach could also 
provide insights into mechanistic or operational factors that could improve clinical outcomes 1-4. 
Heart failure is one of the first core measures by The Joint Commission to assess hospital quality 
initiatives as part of National Hospital Inpatient Quality Measures. Achieving the lowest 
readmission rates possible is thus critical to provide high-quality care and improve quality 
assessments (See: https://www.jointcommission.org/core_measure_sets.aspx).  

1.3.  Improving quality of healthcare delivery and outcomes using EMR-wide phenomic 
data 

Implementation of precision phenotyping algorithms and development of prescriptive prediction 
models models using phenomic data could aid in the discovery of new knowledge from 
biomedical and healthcare big data generated in the hospital setting5,6. Mining of phenomic big 
data enables the identification of new or unknown features or combinatorial features driving 
clinical outcomes. Electronic medical records (EMR) provide access to clinical phenome data and 
enable better understanding of various clinical phenotypes and the associated outcomes in a 
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systematic manner. Design, development, and deployment of predictive and prescriptive models 
using EMR-based methods could help to accelerate stratification of patients at risk for improved 
care. Deploying validated predictive patterns in a clinical setting could improve the quality of 
healthcare delivery and may have a positive impact on patient outcomes. Phenomics7 is a 
relatively new omics term used to define collectively the measurement of phenotypic 
characteristics of biological entities that include the physical and biochemical traits of organisms 
including humans. Human phenomics can benefit by leveraging EMRs as a longitudinal data 
source for the collection of clinical and health traits. While the data currently available within 
EMR for building a complete picture of a human phenomic state is limited, it is rapidly improving 
with the integration of genomic data, sensor data and other non-clinical data elements3,4. 
Phenome-wide association studies (PheWAS) studies aim to understand the role of a genetic 
variant identified from genome-wide association studies (GWAS) in increasing or decreasing the 
likelihood of observing other diseases in a case-control cohort. PheWAS studies are now revealing 
the molecular architecture of the pleiotropic nature of genetic variants in mediating multiple 
diseases1,8.  

1.4.  Predictive modeling of readmission rates in heart failure and need for improvement  

Heart failure is a heterogeneous condition characterized by progressive inability of the heart to 
supply sufficient blood to the organs of the body. HF is associated with high degree of morbidity 
and mortality, and 50% of patients with HF die within five years of diagnosis. Heart failure 
accounts for 43% of Medicare spending even though this patient population only makes up 14% of 
all Medicare beneficiaries. Heart failure is the top cause of readmission for the Medicare fee-for-
service patient population and costs approximately 38 billion dollars annually. Several attempts 
have reported on the utility, accuracy and actionability of predictive models to model and predict 
potential readmission associated with heart failure hospitalization. Previously reported models 
have been built using clinical variables and covariates such as age, sex, race, socioeconomic 
factors, body mass index, laboratory measures, biomarkers (e.g. B-type natriuretic peptide levels), 
comorbidities (e.g. neurological disorders, type II diabetes mellitus, etc.), behavioral factors, 
functional phenotyping of cardiovascular systems (e.g. left ventricular ejection fraction), discharge 
follow-ups and medications 9-12. Some models have used billing and procedural codes extracted 
from EMR or other hospital administration databases. Continuous hemodynamic monitoring 
devices have also been used to predict readmission rates 13-15. The predictive power of such HF 
readmission models remains weak, with Area Under Curve (AUC) values generally in the range of 
0.6-0.7. Such models provide only modest utility for predicting which patients may return to the 
hospital for readmission. There is an immediate need for tools that may be used at the bedside or 
as part of discharge disposition planning to assess and minimize risk for readmission. Studies led 
by Hosseinzadeh et.al16 leverage claims data to predict all-cause readmissions, and Duggal et.al17 
used EMR-derived clinical and administrative data to predict readmission in the setting of a 
diabetes cohort. To the best of our knowledge, our study is one of the first attempts to use 
phenome-wide data to identify novel factors driving readmissions related to congestive heart 
failure and develop EMR-wide prediction models with orthogonal validation to predict the 
readmission event.  
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2.  Methods 

The Mount Sinai Institutional Review Board approved the study. An author (JJ) act as the honest 
data broker to ensure PHI and HIPAA adherence during the data management, analytics and 
machine learning. Data scientists and research scientists in the project received a deidentified 
database from the Mount Sinai Data Warehouse. All analyses were performed using the 
deidentified data.  

2.1.  Mount Sinai Heart cohort and characteristics of heart failure cohort 

The study cohort consists of a database of 1,068 individuals admitted to Mount Sinai Heart service 
during the year 2014. The principal diagnosis of heart failure using the CMS directive was used to 
compile HF patients. Each patient readmitted to any service of Mount Sinai within 30-days after 
the discharge of an HF primary encounter is defined as a "case". The remainder of patients who 
did not return to the hospital within 30-days were defined as “controls”. Patients admitted to other 
locations of Mount Sinai Health System or other hospitals within New York city/state or other 
states in country were not captured. An author (DR) manually phenotyped the cohort and 
classified the patients as part of a quality control initiative at Mount Sinai Hospital. As an 
exploratory study with low case rate, no patient exclusion criteria were applied to the dataset.  

2.2.  Clinical data analytics and EMR-wide machine learning  

Data was stored in a MySQL database indexed using a unique hexadecimal identifier associated 
with the data for the 
visit about HF. Only 
data about the primary 
encounter (admission 
with HF as primary 
diagnosis) is employed 
in the analysis. All 
figures were generated 
using Wizard for Mac 
(http://www.wizardma
c.com/) and Weka 18-

21. A Naïve Bayes 
model is used for 
machine learning. 
Exploratory data 
analyses were 
performed using 
Elasticsearch and Kibana (https://github.com/elastic/kibana). All models were independently 
created using 70% of the dataset for training and 30% of the dataset for testing. Bayesian models 
were created using features unique to each data element and feature selection was performed using 
correlation based feature subset selection across two classes. Orthogonal validation of machine 

DISCHARGE_DISPOSITION

Home
Patient has expired

Sub-Acute Care Facility
Skilled Nursing Facility
Health Related Facility

Adult Home
Hospice

Dsc/trn to other rehab facility
Against Medical Advice

Med/Surg to Rehab
Acute Care

Home Health Care
Rehab to Med/Surg

Dsc/Trn to Court/Law Enforcement

872
52
40
28
23
17
11
6
5
5
3
3
2
1

f1(M1) f3(M3)

Top features

Composite Model

Accuracy and AUC

Clinical validation

f2(M2) f4(M4) f5(M5)

Figure 1: EMR-wide machine learning architecture and predictive modeling 
strategy to find drivers of readmission rates 
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learning models was performed with logistic regression. Principal component analyses to 
understand the variability of features were performed using the Python-based scikit-learn package 
(http://scikit-learn.org/) and visualized using matplotlib (http://matplotlib.org/). Testing accuracies 
were estimated using the 5-fold cross validation approach. We define the classification task as a 
binary classification problem, where RA=”Readmitted” patient and NonRA=”Not readmitted 
patient”. Weka provides a suite of state-of-the-art machine learning algorithms using a 
programmatic interface in Java. We used the native Naïve Bayesian classifier in Weka without 
modification in this exploratory analysis. The algorithm was selected as a rational choice based on 
prior studies on modeling of readmission prediction16 Feature ranking and selection22,23 was 
performed using a correlation-based feature selection (CFS) method. CFS is a widely used feature 
selection strategy that aims to find subset of features with significant discriminatory power to 
perform the classification but which are uncorrelated in feature space. Feature selection is 
implemented using the “CfsSubsetEval” method in Weka 
(http://weka.sourceforge.net/doc.dev/weka/attributeSelection/CfsSubsetEval.html). Orthogonal 
class-specific statistical significance was estimated using Kolmogorov-Smirnov test (distribution 
estimates), t-test (differences across class-labels), Z-score or Mann-Whitney (median estimates) 
depending on the data type tested (lab-test, medication, procedure etc.) across the groups (RA and 
NonRA). An overview of the study design is provided in Figure 1.  

3.  Results 

3.1.  Cohort characteristics: 

EMR-wide data 
mining provides a 
deep view of various 
data elements in the 
cohort (Figure 2). A 
total of 4,205 
variables were 
extracted from EMR. 
The data from EMR 
was categorized into 
five data modalities as 
diagnosis codes (ICD-
9 codes and IMO-
codes), procedures 
(ICD-9, SNOMED-
CT and CPT-codes), 
medications and vital 
signs. For each patient, 
the patient encounter 
specific data is extracted from the EMR. A patient specific filter is used to extract data unique to 

a) 

c) d) Observed Sample

0: 83.3%

1: 16.7%

Estimated Population

0: ± 2.2%

1: ± 2.2%

Distribution of UHC Index Enc. Flag

b) 

Figure 2: Summary of the study cohort a) case-control ratio: cases are 
indicated as “1” and controls as “0”. Frequency charts of b) diagnoses c) 
medications and d) procedures. 
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the visit; the data from the most recent visit of the patients with multiple admissions is 
incorporated. 
 
 Phenomic data extracted from EMR: 
1. Diagnoses codes using ICD-9 (n=1,763): ICD-9 codes (http://www.cdc.gov/nchs/icd/icd9.htm) 

were extracted from Mount Sinai Data Warehouse. The codes were mapped to ICD-9 or IMO 
codes (https://www.e-imo.com/problemit-terminology-1); all codes were unified to ICD-9 and 
normalized using UMLS as the bridge 
(https://www.nlm.nih.gov/research/umls/mapping_projects/icd9cm_to_snomedct.html).   

2. Medications (n=1,028): Medications prescribed during the hospitalization were compiled 
using Epic and extracted from Mount Sinai Data warehouse. Medication name, dosage, route 
of administration was obtained. All medication data was normalized using RxNorm 
(https://www.nlm.nih.gov/research/umls/rxnorm/).  

3. Laboratory measurements (n=846): Laboratory measures captured in the EMR were compiled; 
the raw values of the tests without normalization have been used as a matrix of observations 
with patients as rows and individual tests as columns.  

4. Procedures (n=564): Procedures encoded using SNOMED-CT or ICD-9-CM procedures were 
used.  

5. Vital signs (n=4): Pulse, respiration rate, systolic blood pressure, heartbeats and temperature 
were compiled from bedside monitor logs captured in a MySQL database. Vitals were often 
captured using multiple monitors and approaches. For example temperature was captured at 
the bedside as axillary temperature, temperature measured via catheter, oral temperature, rectal 
temperature, or tympanic temperature. 

 

3.2.  EMR-wide feature selection and predictive modeling using five different data 
modalities  

The machine learning strategy utilized for our study is outlined in Figure 1. To address the trade-
offs in dealing with a broad range of features using a small number of samples and missing data, 
we first generated distinct models using different data elements and relevant features were 
selected. Features were also compared using orthogonal metrics including logistic regression and 
PCA to understand the variable space and their inherent relationships. Finally, a composite model 
for performing predictions is generated using features selected from the individual models. As a 
real-world machine-learning task, we had a small subset of cases (16.7%) compared to the 
controls (83.3%). We used a random subset of age and sex matched controls to control the bias 
introduced by imbalanced datasets. We first generated five different NB predictors using 
individual data elements. Medications were the most predictive with an accuracy of 81% and 
AUC of 0.615. Procedure codes encoded as binary variable fared poorly with AUCs of <0.50 
(ICD-9 procedures) and 0.553 (CPT codes). We did not generate an independent model for feature 
selection using the four vital signs after accounting for the small number of features. Laboratory 
values also showed lower AUC (0.535). Exploration of the data using principal component 
analyses also revealed that procedures had low variance compared to medications. From a 
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healthcare delivery standpoint, this is insightful, as most of the patients have undergone the same 
type of procedures in the cardiac units. However the medication profiles of patients may vary due 
to individualized disease comorbidities, side effect profiles, age, and gender. Details of individual 
models and features identified using feature selection method (See Table 1).  Detailed analyses of 
medications could provide better insights into features driving readmissions (Johnson & Shameer 
et.al; manuscript in preparation) 
 

3.3.  Feature reduction and model refinement   

Due to the low percentage of the cases in the cohort under investigation, a high-dimension feature 
array is prone to overfitting in machine learning of binary classification tasks. To address this, we  

 
have used a feature reduction approach. Features were tested to assess predictive value using a 
classifier based method and regression models.  Feature selection approach and an orthogonal 
validation approach provide insights into a subset of highly predictive variables associated with 
readmitted subset of patients. The AUCs of regression models were 0.5685, 0.6471, 0.7596 and 
0.795 (ICD-9 and CPT) for vitals, diagnoses codes, medications, and procedures respectively (See 
Figure 4 and 5). The 
final composite 
model is developed 
using 105 features 
with an AUC=0.78 
and cross-validation 
testing accuracy of 
83.19%.  
 
 
A brief summary of 
features significant 
in feature selection 
method and the 
orthogonal 
validation approach 
is provided below (also see Figure 5): 

Data-element Type Encoding Accuracy AUC Features 
Diagnosis ICD-9 Diagnosis Binary 70.3297% 0.605 34/1763 
Procedures ICD-9-Procedure Binary 77.907% <0.50 4/273 
Procedure CPT-codes Binary 72.9858% 0.553 8/564 
Medications  Medication name and dosage  Binary 81.9048% 0.615 26/1028 
Labs Non-descriptive lab measurements  Continuous  73.9336% 0.535 29/846 
Composite 
model 

Combined features  Hybrid  83.9000% 0.780 105 

Table 1: Summary of different Bayesian predictors and features compiled using CFS method 
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Figure 3: ROC curves a) logistic regression models and b) composite model 
with 105 features 
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a) Procedures: out of 12 procedures, codes for invasive procedures including fine needle 
aspirations with imaging guidance, intravenous catheterization, routine culture and cell count were 
significant procedures. As procedures were counted as individual events, the subset of readmitted 
patients has higher frequency of these procedures compared to patients not readmitted. Repetitive 
tests for culture and cell count could also indicate potential infection or other complications. b) 
Medications: amongst the 1,028 medications, our analyses indicate 28 medications as features 
with discriminatory power.  Three medications (carvedilol 25 mg tablet, ethacrynic acid IVPB and 
isosorbide dinitrate 30 mg tablet) were validated using logistic regression approach. However, we 
noted that only 2.7% of the cohort received carvedilol 25 mg, and all of them were part of the 
readmission subset. Previous work has potentially indicated that increasing in carvedilol dosage 
may lead to better a outcome on readmission rate24. c) Diagnosis: chronic conditions like type 1 
diabetes (ICD-9 code 250.01), osteoarthritis; manifestations of cancer (ICD-9 code 233); 
neurological or psychiatric conditions (mood disorders, hallucinations, sleep disturbances cocaine 
abuse); cardiovascular structural conditions like rheumatic mitral insufficiency and gastrointestinal 
conditions such as enteritis were conditions significantly associated with readmission rates. Onco-
cardiology assessment of patients may also help in reducing the readmission rates in high-risk 
patients. Assessment of cardiovascular patients for psychosocial aspects and careful evaluation of 
individual comorbidities could help to reduce the readmission rates and adherence to the 
medications 25-28. d) Laboratory values: laboratory values were least predictive in the individual 
modeling stage. During the orthogonal validation step, creatinine kinase, glucose-fluid, fluid 
triglycerides and 
lymphocytes were 
significant. Optimal 
glycemic control is a 
key factor in 
determining positive 
outcomes in heart 
failure patients, 
especially in those 
with diabetes mellitus 
29. We noted that 
features identified 
using our feature 
selection method are 
concordant with 
earlier findings. For 
example, we have 
identified glucose-
fluid and type-1 
diabetes as predictive factors. We have also identified psychiatric illness, a known factor that 
influences readmission rates in the setting of complex diseases.  

Lab tests P Procedures P Medications P
FLUIDTRIGLYCERIDES 0.007 Cell Count, Body Fluid 0.001 ETHACRYNIC_ACID_IVPB 0.002
CK(CPK) 0.01 Control of epistaxis by cauterization 0.001 ISOSORBIDE_DINITRATE_30_MG_TABLET0.002
TOTALPROTEINUR24HR 0.016 Diabetes mellitus without mention of complication, type I [juvenile type], not stated as uncontrolled 0.001 CARVEDILOL_25_MG_TABLET 0.015
U-PROTEIN(CONC.) 0.027 Rheumatic mitral insufficiency 0.001
LYMPHOCYTE-PER 0.027 Carcinoma in situ of breast and genitourinary system 0.002
HCGTOTALQUANT. 0.03 Cocaine abuse, continuous 0.002
GLUCOSEFLUID 0.032 Culture, Urine, Routine 0.002
IGGQUANT 0.041 Fine needle aspiration with imaging guidance 0.002
HEMOGLOBINPLASMA 0.048 Hallucinations 0.002
PROTEIN/CREA.RATIOUR 0.048 Insertion of a non-tunneled peripherally inserted central venous catheter, without subcutaneous port or pump0.002
ABSNEUTROPHILCOUNT 0.051 Osteoarthrosis, unspecified whether generalized or localized, shoulder region 0.002
5804-PSATOTAL 0.071 Other and unspecified episodic mood disorder 0.002
1412-U-PROTEIN(RANDOM) 0.102 Other Cystoscopy 0.002
346-APTT-SL 0.112 Personal history of diseases of blood and blood-forming organs 0.002
UREANITROGEN(POCT) 0.14 Regional enteritis of small intestine with large intestine 0.002
1201-OSMOLALITYURINE 0.158 Sleep disturbances 0.002
PLATELET 0.18 Pulse 0.321
T4TOTAL 0.246
GLUCOSE(POCT) 0.266
HEMATOCRIT-VEN(ISTAT-MPOCT) 0.336
GLUCOSE(MPOCT) 0.344
NEUTROPHIL-PER 0.387
VANCOMYCINTROUGH 0.63
GAMMAGT 0.743
PROGRAF(FK-506)RANDOM 0.771
NEUTROPHIL 0.809

L161
by ClassLabel

NoRA 8.352 ± 1.063

RA 5.944 ± 1.463

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

L268
by ClassLabel

NoRA 211.518 ± 5.558

RA 219.989 ± 14.136

0 100 200 300 400 500 600 700 800

a) b) c) 

d) e) 

Figure 4: Orthogonal validation of discriminating features a) laboratory tests 
b) procedures and diagnoses c) medications d) absolute neutrophil count 
(P=0.051) e) platelet count (P=0.180) 
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3.4.  Comparison with current heart failure readmission models 

In this work we use EMR-wide feature selection and machine learning to discover novel features 
and develop new predictors to predict readmission rates. One of the first predictive modeling of 
hospital readmissions using healthcare data from Quebec, Canada by Hosseinzadeh et.al16 showed 
that Naïve Bayes models (0.65) performed better than Random Forest models (0.64). Using a 
diabetes cohort from a hospital in India, Duggal et.al17 showed that Naïve Bayes (0.67) showed 
higher readmission associated savings compared to logistic regression (0.67), Random Forests 
(0.68), Adaboost (0.67) and Neural Networks (0.62).  Futoma et.al30 showed that Random Forests 
(0.68) and deep learning using neural networks (0.67) have similar accuracy rate with >1 million 
patients and > 3 million admission. However, Penalized Logistic Regression had similar accuracy 
rates as we have shown in our orthogonal validation methods. Compared to existing predictive 
models for HF readmission rates (AUCs in the range of 0.6-0.7), results from our EMR-wide 
predictive model (AUC=0.78; Accuracy=83.19%) and phenome-wide feature selection strategies 
are encouraging and reveal the utility of such data-driven, EMR-wide machine learning.  

4.  Discussion 

Readmission rate is a quality assessment metric routinely used to infer the quality of life index of 
patient population and the quality of healthcare delivery. Irrespective of the advances in 
biomedical and healthcare research practices, hospital quality control offices still use traditional 
readmission risk algorithms and predefined sets of variables to infer the probability patient 
readmission. However, predictive modeling using big data sourced from different facets of 
healthcare operations could provide clues to improve the quality of healthcare delivery. 
Combining predictive analytics with preventive measures would also engage patients, physicians, 
and payers to participate proactively in improving the health and wellness. Recently we have 
combined EMR data and genomic data to cluster patients into subtypes with specific genetic 
variants, disease comorbidities, and medications in a diabetes cohort. Application of deep 
learning31,32 in healthcare also shows promise for performing EMR-wide analytics using 
approaches like Deep Patient33. In a recent study, we have created temporal models of disease 
trajectories that could potentially reveal how the population could cluster into subgroups based on 
age, gender, self-reported ancestry and comorbidities34. Further, we have shown that cognitive 
machine learning can be utilized for precise phenotyping of high volume echocardiography 
datasets35. We have also applied machine learning to understand various features driving patient 
satisfaction36. Our collective experience in large-scale, automated mining of EMR data suggests 
that such approaches are useful for both discovery research and the identification of actionable 
clinical parameters driving diseases or outcomes.     

5.  Limitations of the current study 

In this study, we use all codes without further comprehension; for example, coding systems other 
than ICD-9 provide an easy way to combine disease. Such an approach could also lead to 
compiling of similar conditions and hence may not reveal true predictors. For example, we have 
identified enteritis as a potential diagnosis with readmission. This term would be summarized 
under gastroenterological conditions. Grouping medication by class or category may also reduce 
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the feature space at the cost of feature resolution. We attempt to capture the best characteristic 
elements from the real-world data set and hence no data imputation or normalization has been 
used in our study. The feature selection method may also influence the composition of the models; 
a systematic assessment of various feature selection algorithms could further enhance the 
robustness of the model. Healthcare datasets are highly sparse, for example, all patients are not 
being tested using same laboratory tests except for a few generic tests. Hence, several features 
may have sparse representations.  Even though we had access to EMR-linked genomic data (See 
BioMe: http://icahn.mssm.edu/research/ipm/programs/biome-biobank), genomic data was not used 
in this study. Due to a small number of cases; a dramatic increase in feature space would lead to 
overfitting and high error rates during predictive modeling. We hope to utilize genomic 
information in a revised version of the model with a larger case dataset. In the current study, we 
used data from one year of healthcare operations from a single tertiary care healthcare institution. 
The model should be tested using data from multiple sites and several data-years. Designing of 
harmonized phenotyping algorithms and data dictionaries leveraging various health information 
exchanges could help to gather a large number of samples and scale the study using large cohort. 

6.  Conclusions and Future Directions 

A data-driven predictive model is developed to predict readmission rates in heart failure patients. 
Cases and controls were compiled based on 30-day readmission evidence to the same location. 
Compared to the existing repertoire of predictive models to assess readmission, our model shows 
better accuracy using one year of readmission data from a single site. However, the model needs to 
be updated and calibrated using multiple years of datasets from different sites across the nation. 
Feature selection provides insights into several novel factors that could help to delineate 
readmission rates associated with HF. Implementing data-driven methods that EMR-wide 
variables in a hypothesis-free approach could help us to find new features underlying clinical 
outcomes. Designing predictive and prescriptive models would help to accelerate stratification of 
patients at risk for improved care. Such findings and predictive assessments have significant 
implications for the quality of healthcare delivery and impact on patient outcomes. We envisage 
that our finding will improve the attempts to develop EMR-wide and scalable phenomics based 
predictive modeling to find critical events relevant to healthcare delivery and patient outcomes.  
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